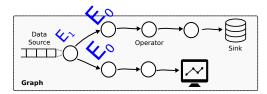
Algorithms for Elastic Big Data Stream Processing

Alexandre da S. Veith

Advised by Marcos D. de Assunção, Laurent Lefèvre

alexandre.veith@ens-lyon.fr

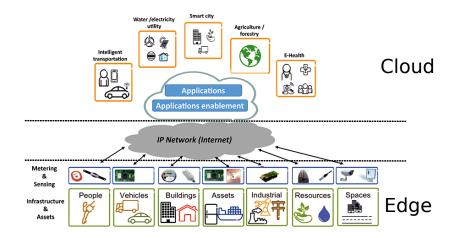
23rd April 2018


E >

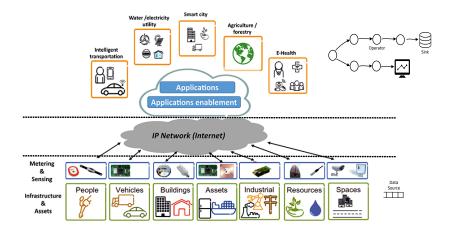
Context of Data Stream Processing (DSP) Placement Infrastructure Constraints DSP Application Placement Related Work on DSP Application Placement

Motivation

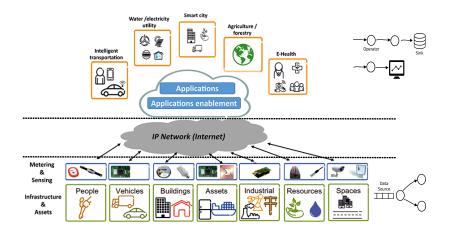
 Today's instruments and services are producing ever-increasing amounts of data that require quick analysis(low end-to-end latencies)



< - Fill ▶


Context of Data Stream Processing (DSP) Placement Infrastructure Constraints DSP Application Placement Related Work on DSP Application Placement

Edge Infrastructures and Data Stream Processing


Context of Data Stream Processing (DSP) Placement Infrastructure Constraints DSP Application Placement Related Work on DSP Application Placement

Edge Infrastructures and Data Stream Processing

Context of Data Stream Processing (DSP) Placement Infrastructure Constraints DSP Application Placement Related Work on DSP Application Placement

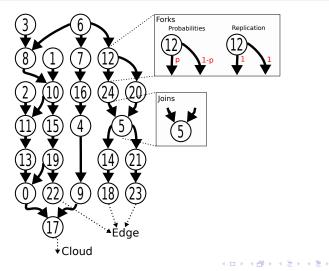
Edge Infrastructures and Data Stream Processing

Context of Data Stream Processing (DSP) Placement Infrastructure Constraints DSP Application Placement Related Work on DSP Application Placement

Edge Devices and Communication Constraints

Raspberry Pi 2

Galileo



LTE: 3G, 4G, 4.5G, and 5G LoRaWAN SigFOx

Research Overview Problem Solution Context of Data Stream Processing (DSP) Placement Infrastructure Constraints DSP Application Placement Related Work on DSP Application Placement

DSP Application Behaviors

Context of Data Stream Processing (DSP) Placement Infrastructure Constraints DSP Application Placement Related Work on DSP Application Placement

DSP Application Trade-off

Throughput versus response time

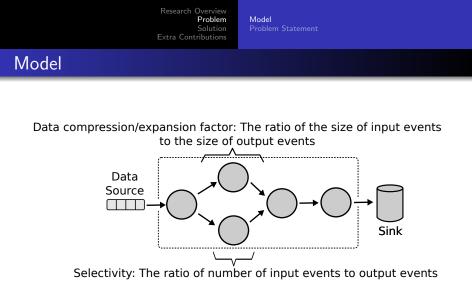
Throughput

- Time windows to create message batches
- A decreasing in network latency can impact data transfers
- Increase the response time for a message

Response time (i.e. end-to-end application latency)

- One-at-a-time message transfer
- The response time is affected by the network latency
- Near real-time solutions

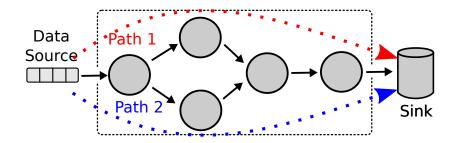
A (10) A (10) A (10)


Context of Data Stream Processing (DSP) Placement Infrastructure Constraints DSP Application Placement Related Work on DSP Application Placement

Related Work on DSP Application Placement

- Dynamic placements [Cardellini:2015, buddhika:2016]
- Static placements
 - Placement by hand [Sajjad:2016, Cheng:2015]
 - Communication is disregarded [Cheng:2015, Wu:2015, Zeng:2015, Hochreiner:2016]

de Assunção, M. D.; da Silva Veith, Alexandre; and Buyya, R. Distributed data stream processing and edge computing: A survey on resource elasticity and future directions Journal of Network and Computer Applications , 2018, 103, 1 – 17


< A ▶

Problem

Model

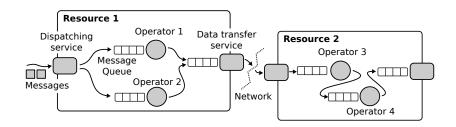
Model

3

э

Model Problem Statement

Model



-

< □ > < 同 > < 三 >

Model Problem Statement

Model

Two queues: Computation and Communication

-

< □ > < 同 >

Model Problem Statement

Problem Statement / Methodology

Minimize metrics such as end-to-end application latency and energy consumption by placing operators onto cloud and edge resources

Physical infrastructure capabilities

- CPU and memory
- Network latencies and bandwidth

Application requirements

- Selectivity
- Data compression rate
- CPU and Memory
- Data sources and sinks localization

Solution by approximation to achieve a **good result** Evaluation (simulation and real-world) through **comparison** to the **state-of-the-art**

Alexandre da S. Veith

Model Problem Statement

Formalization

End-to-end application latency

$$L_{\begin{array}{c} \boxed{P_{i}} \\ Paths \end{array}} = \sum_{\substack{o \in p_{i} \\ r \in \mathcal{R}}} mo_{\langle o, r \rangle} \times stime_{\langle o, r \rangle} + \sum_{r' \in \mathcal{R}} ms_{\langle o \rightarrow o+1, r \leftrightarrow r' \rangle} \times ctime_{\langle o, r \rangle \langle o+1, r' \rangle}$$

-

< - Fill ▶

Model Problem Statement

Formalization

End-to-end application latency

$$L_{\begin{array}{c} \boxed{p_{i}} \\ \mathsf{Paths} \end{array}} = \sum_{\substack{o \in p_{i} \\ r \in \mathcal{R}}} mo_{\langle o, r \rangle} \times stime_{\langle o, r \rangle} + \sum_{r' \in \mathcal{R}} ms_{\langle o \rightarrow o+1, r \leftrightarrow r' \rangle} \times ctime_{\langle o, r \rangle \langle o+1, r' \rangle}$$

$$L_{p_{i}} = \sum_{\substack{o \in p_{i} \\ r \in \mathcal{R}}} \underbrace{mo_{\langle o, r \rangle}}_{\text{Mapping}} \times stime_{\langle o, r \rangle} + \sum_{r' \in \mathcal{R}} \underbrace{ms_{\langle o \to o+1, r \leftrightarrow r' \rangle}}_{\text{Mapping}} \times ctime_{\langle o, r \rangle \langle o+1, r' \rangle}$$

$$\underbrace{\text{Mapping}}_{\text{Operator}} \text{Stream}$$

医下子 医

< - Fill ▶

Model Problem Statement

Formalization

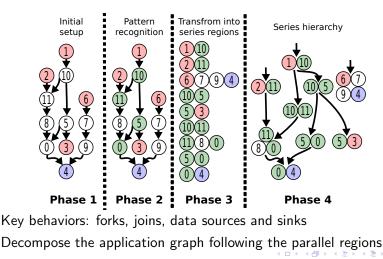
End-to-end application latency

$$L_{\begin{array}{c} \underline{P_{i}} \\ \text{Paths} \end{array}} = \sum_{\substack{o \in p_{i} \\ r \in \mathcal{R}}} mo_{\langle o, r \rangle} \times stime_{\langle o, r \rangle} + \sum_{r' \in \mathcal{R}} ms_{\langle o \rightarrow o+1, r \leftrightarrow r' \rangle} \times ctime_{\langle o, r \rangle \langle o+1, r' \rangle}$$

$$L_{p_{i}} = \sum_{\substack{o \in p_{i} \\ r \in \mathcal{R}}} \underbrace{mo_{\langle o, r \rangle}}_{\text{Mapping}} \times stime_{\langle o, r \rangle} + \sum_{r' \in \mathcal{R}} \underbrace{ms_{\langle o \to o+1, r \leftrightarrow r' \rangle}}_{\text{Mapping}} \times ctime_{\langle o, r \rangle \langle o+1, r' \rangle}$$
Operator
Stream

Computation time

Communication time


$$stime_{\langle o,r\rangle} = \frac{1}{\mu_{\langle o,r\rangle} - \lambda_o^{in}} \qquad ctime_{\langle o,r\rangle\langle o+1,r'\rangle} = \frac{1}{\left(\frac{bdw_{r\leftrightarrow r'}}{\varsigma_o^{out}}\right) - \lambda_o^{out}} + I_{r\leftrightarrow r'}$$

Alexandre da S. Veith

Algorithms for Elastic Big Data Stream Processing 10 / 23

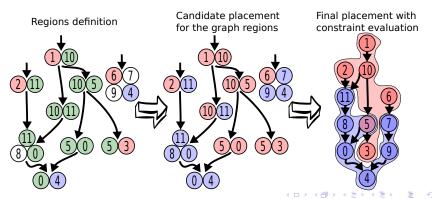
Finding Application Patterns - Contribution Latency-Aware Strategies - Contribution Expected Contributions Evaluation Summary of Our Contributions

Finding Application Patterns

Alexandre da S. Veith

Finding Application Patterns - Contribution Latency-Aware Strategies - Contribution Expected Contributions Evaluation Summary of Our Contributions

Response Time Rate (RTR) Strategy


- Response Time Rate for computational resource based on the end-to-end application latency
- Sequentially estimate the operator response time following the upstream(s) and downstream(s) connections
- Evaluate memory, cpu, and bandwidth constraints

$$L_{p_{i}} = \sum_{\substack{o \in p_{i} \\ r \in \mathcal{R}}} mo_{\langle o, r \rangle} \times stime_{\langle o, r \rangle} + \sum_{r' \in \mathcal{R}} ms_{\langle o \rightarrow o+1, r \leftrightarrow r' \rangle} \times ctime_{\langle o, r \rangle \langle o+1, r' \rangle}$$

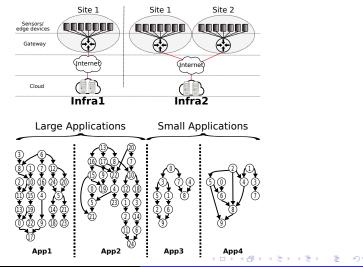
Finding Application Patterns - Contribution Latency-Aware Strategies - Contribution Expected Contributions Evaluation Summary of Our Contributions

Response Time Rate with Region Patterns (RTR+RP) Strategy

- Split the application graph following the pathways
- Calculate the Response Time Rate only to the edge side

Finding Application Patterns - Contribution Latency-Aware Strategies - Contribution Expected Contributions Evaluation Summary of Our Contributions

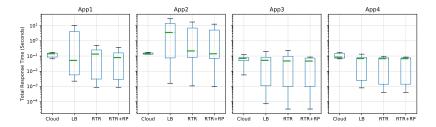
Expected Contributions


To split the DSP application graph following the paths between data sources and sinks

To evaluate the operator placement considering characteristics and requirements of applications and resources

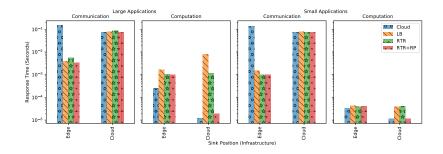
- Latency-aware
- Heterogeneity
- Capability-oriented decisions

Finding Application Patterns - Contribution Latency-Aware Strategies - Contribution Expected Contributions **Evaluation** Summary of Our Contributions


Experimental Setup

Alexandre da S. Veith

Finding Application Patterns - Contribution Latency-Aware Strategies - Contribution Expected Contributions **Evaluation** Summary of Our Contributions


Results on Response Time

Small Applications: Improve 26% (cloud-only) and 5% (LB) **Large Applications:** Improve .21% (cloud-only) and 92% (LB) RTR+RP outperforms up to **54%** cloud-only

Finding Application Patterns - Contribution Latency-Aware Strategies - Contribution Expected Contributions **Evaluation** Summary of Our Contributions

Results on Response Time

- 97.75% better for sinks in edge
- 1.5% worst for sinks in cloud.

Finding Application Patterns - Contribution Latency-Aware Strategies - Contribution Expected Contributions Evaluation Summary of Our Contributions

Summary of Our Contributions

- A model and the DSP placement problem formalization
- Two strategies to improve the response time
- A performance comparison using a simulated environment

Publications Responsabilities and Training International Collaborations Frameworks Expertise Summary of Perspectives

Publications

Book Chapter

Dias de Assunção, Marcos; da Silva Veith, Alexandre (2018). Apache Spark. Encyclopedia of Big Data Technologies, 2018. DOI: 10.1007/978-3-319-63962-837-1.

International Journal

de Assunção, M. D.; da Silva Veith, Alexandre; and Buyya, R. Distributed data stream processing and edge computing: A survey on resource elasticity and future directions Journal of Network and Computer Applications, 2018, 103, 1 – 17. Core: A

National Conference

 da Silva Veith, Alexandre: Dias de Assunção, Marcos; Lefèvre, Laurent. (2017). Assessing the Impact of Network Bandwidth and Operator Placement on Data Stream Processing for Edge Computing Environments. Conférence d'informatique en Parallélisme, Architecture et Système.

International Conferences

- (Submitted) C. S. Anjos, Julio; Matteussi, Kassiano; R. R. De Souza Jr, Paulo; da Silva Veith, Alexandre; Fedak, Gilles; Luis Victoria Barbosa, Jorge; R. Geyer, Claudio. (2018). Enabling Strategies for Big Data Analytics in Hybrid Infrastructures. International Conference on High Performance Computing and Simulation;
- (Planning) da Silva Veith, Alexandre; Dias de Assunção, Marcos; Lefèvre, Laurent. (2018). Latency-Aware Strategies for Placing Data Stream Processing Applications onto Edge Computing Infrastructure. International Conference on Service Oriented Computing.Core: A

Publications Responsabilities and Training International Collaborations Frameworks Expertise Summary of Perspectives

Lab day-life and Training

Lab day-life

- Frequent meetings with advisors;
- AVALON chair and meeting organizer.

Training

During the first year, I completed the following training

requirements:

Complementary Scientific - 64h RSD/ASF winter school - 24h;

Parallel and Distributed Programming - 40h;

Insertion Training - 79h FLE (University of Lyon 1) - 39h FLE (CPU) - 40h

Publications Responsabilities and Training International Collaborations Frameworks Expertise Summary of Perspectives

International Collaborations

• Rutgers University (Period of stay 11/28/2017-12/9/2017)

- Fair evaluation and analysis process of stream applications
- Apply hubs in the edge side to control the number of transferred messages
- Setting up a platform to launch experiments
- University Carlos III of Madrid (UC3M) (Period of stay 1/29/2018-2/12/2018):
 - IoT-oriented scenario
 - Profiling and instrumenting applications
 - Setting up a platform to launch experiments

Publications Responsabilities and Training International Collaborations Frameworks Expertise Summary of Perspectives

Frameworks Expertise

- Apache Kafka
- Mosquitto
- Apache Flink
- Apache Storm
- Apache Spark
- Apache Edgent
- OMNeT++
- G5K
- CPLEX

Publications Responsabilities and Training International Collaborations Frameworks Expertise Summary of Perspectives

Perspectives

Short Term

- To conclude "Latency-Aware Strategies for Placing Data Stream Processing Applications onto Edge Computing Infrastructure" for ICSOC;
- To improve the model with: partitions and stateful operators; and reconfiguration phase;
- To write papers with Rutgers and UC3M;

Long Term

- To apply our model to a real-world evaluation using Grid'5000;
- To submit a journal paper: April 2019;
- The period of writing thesis: April-September 2019;
- PhD defense: October 2019.