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ABSTRACT
Chronic pain is often an ongoing challenge for patients to track
and collect data. Pain-O-Vision is a smartwatch enabled pain man-
agement system that uses computer vision to capture the details of
painful events from the user. A natural reaction to pain is to clench
ones fist. The embedded camera is used to capture different types
of fist clenching, to represent different levels of pain. An initial pro-
totype was built on an Android smartwatch that uses a cloud-based
classification service to detect the fist clench gestures. Our results
show that it is possible to map a fist clench to different levels of
pain which allows the patient to record the intensity of a painful
event without carrying a specialized pain management device.

CCS CONCEPTS
• Human-centered computing → Mobile devices; • Applied
computing → Consumer health.
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1 INTRODUCTION
Chronic pain affects a large subset of society. Pain can be difficult
to classify as some people experience it differently from others.
Pain management between a patient and their healthcare provider
presents challenges with the accuracy in reporting the onset of a
painful episode and characterizing the intensity of the pain. When
a patient experiences an episode of chronic pain outside a clinical
setting, their ability to later recall details about each episode is
lost overtime. An often-used data collection method known as
Ecological Momentary Assessment (EMA) affords frequent, in-situ
assessment of physiological and psychological data to improve
recall [3]. Reducing the burden on a patient to manage a medical
condition is the goal of this work. Expressions of pain are often
manifested as physical reactions, which presents an opportunity
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Figure 1: Dual camera smartwatch with palm view

for instrumented devices to capture the event with little interaction
from the patients.

This work introduces Pain-O-Vision for reducing the burden of
EMA, leveraging the images captured from the wrist in real-time
to classify hand gestures to different pain levels and recording the
pain levels in the user’s smartwatch application. Previous work [1]
has shown that a natural reaction to pain is to squeeze or clench
ones fist, but it requires the user to carry a specialized squeezable
device in the pocket wherever they go to register the pain event.
Pain-O-Vision reduces this burden by keeping the user input as
discreet as possible using the patient’s smartwatch for this purpose.
Several works [2, 4–6] have adopted cameras to capture various
hand angles from a body-mounted camera for multiple goals, but
none of them used the view of the palm and fingers to identify pain
events. Hence, this work explores embedded cameras in commodity
smartwatches to provide a mobile hands-free experience for EMA
of painful events. As shown in Figure 1, our initial prototype lever-
ages the images captured from the wrist in real-time to launch the
application without using a second hand, making our approach a
one-handed experience1.

2 PAIN-O-VISION
Our prototype relies on the Kospet Prime smartwatch, which is out-
fitted with two cameras, as seen in Figure 1. The front-facing camera
is used for facial unlock, and the side camera captures the input
gestures from the wrist. The smartwatch also has several sensors
such as the accelerometer and gyroscope that provide gesture-based
input.

Pain-O-Vision leverages both the smartwatch and cloud for de-
ploying the software components. The patient interacts with the
smartwatch via the camera. The images from the camera are sent

1The current prototype requires wearing the smartwatch in a reversed position, but
we envision a camera embedded in the watch band where the patient can capture the
images easily.

483

https://doi.org/10.1145/3458864.3466907
https://doi.org/10.1145/3458864.3466907


MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA Ramprasad

to the Google AutoML2 service. The classification is then returned
and stored. AutoML is a blackbox image classification service that
allows users to use their own datasets to create custom models that
can later be invoked as a service running remotely in the Google
cloud.

When the patient feels the onset of a painful event and wants
to record it using Pain-O-Vision , they must first raise the watch to
trigger the face unlock feature. After the smartwatch is unlocked,
a custom macro implemented in MacroDroid3 detects the unlock
event and launches the Gesture Listener. The Gesture Listener waits
for the patient to perform a hand gesture within a specified time.
The hand gesture triggers Pain-O-Vision to start a count down for 3
seconds to make a fist clench. Then the Classification Manager acti-
vates the camera and takes a photo. At this point, the watch sends a
haptic response, and the Pain-O-Vision UI closes, releasing the user
from any further interaction with the device. In the background,
the Classification Manager coordinates with Google AutoML and
the Pain Management Log to record the result for later review by
the patient or their physician.

3 EARLY RESULTS
In this section, we discuss the results of capturing fist clench ges-
tures from the wrist view on the smartwatch and the accuracy of
the Google AutoML Vision classifier. The experiments evaluate
different gestures and dataset sizes. The image collection process
to train the model should not be lengthy because that places a bur-
den on the patient and so large amounts of training data are not
expected to be available. We wanted to see the impact on accuracy
when using a smaller dataset compared to a larger dataset. This
was done to determine if the smart watch and application could
be provisioned in a short period of time, for example within the
time frame similar to a visit to the doctors office. The dataset was
collected using the smartwatch camera worn by a single person
in a well lit room. We hope to explore the accuracy with different
lighting conditions, skin tones, and backgrounds in the future.

Experimental setup

We define 3 levels of pain (low, medium, high) and map them to 3
types of fist clenches as shown in Figure 2. The intensity of pain is
often associated with people clenching their fist harder and longer.
Harder clenches result in the fist curling more towards the wrist
and this difference in hand position may allow the model to differ-
entiate levels of pain intensity. We then provided 2 labeled datasets
consisting of open fists and a closed fists. To evaluate the impact
of the dataset size on the accuracy of the model, a larger set with
1,356 images was collected and a smaller set with only 50 images
was collected.

Results discussion

Using the larger dataset, the model classified the fist type correctly
approximately 66% of the time, but for the smaller dataset only 50%
accuracy was observed. The accuracy suffers from the simplicity

2https://cloud.google.com/automl
3https://www.macrodroid.com/

Figure 2: 3 fist clench types

of the single model used and therefore a multi model approach
similar to MediaPipe4 might yield better results. The smartwatch’s
wearing position is also higher than usual and perhaps a watch with
a wide-angle lens could be utilized. This would help to reduce the
distance for a more natural wearing position while also narrowing
the field of view. A narrower field of view would eliminate some of
the background to focus more on the hand and therefore potentially
improve the accuracy of the fist clench classification. More work is
needed to improve the accuracy to make it reliable enough for the
healthcare domain.

4 FINAL THOUGHTS
We presented an approach towards reducing the EMA burden on
patients with chronic pain. This prototype takes the first step to-
wards using an embedded camera on the wrist to expand what can
be detected from a commodity smartwatch. We hope to apply the
approach beyond chronic pain to see if it can help manage other
health-related conditions.

REFERENCES
[1] Alexander T. Adams, Elizabeth L. Murnane, Phil Adams, Michael Elfenbein, Pa-

mara F. Chang, Shruti Sannon, Geri Gay, and Tanzeem Choudhury. 2018. Keppi:
A Tangible User Interface for Self-Reporting Pain. In Proc. of the 2018 CHI Confer-
ence on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18).
Association for Computing Machinery, New York, NY, USA, 1–13.

[2] Jess McIntosh, Asier Marzo, and Mike Fraser. 2017. SensIR: Detecting Hand
Gestures with a Wearable Bracelet Using Infrared Transmission and Reflection.
In Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology (Québec City, QC, Canada) (UIST ’17). Association for Computing
Machinery, New York, NY, USA, 593–597.

[3] Saul Shiffman, Arthur A. Stone, and Michael R. Hufford. 2008. Ecological Momen-
tary Assessment. Annual Review of Clinical Psychology 4, 1 (2008), 1–32.

[4] Srinath Sridhar, Anders Markussen, Antti Oulasvirta, Christian Theobalt, and
Sebastian Boring. 2017. WatchSense: On- and Above-Skin Input Sensing through
a Wearable Depth Sensor. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for
Computing Machinery, New York, NY, USA, 3891–3902.

[5] Lee Stearns, Uran Oh, Leah Findlater, and Jon E. Froehlich. 2018. TouchCam:
Realtime Recognition of Location-Specific On-Body Gestures to Support Users
with Visual Impairments. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1,
4, Article 164 (Jan. 2018), 23 pages.

[6] Robert Xiao, Teng Cao, Ning Guo, Jun Zhuo, Yang Zhang, and Chris Harrison.
2018. LumiWatch: On-Arm Projected Graphics and Touch Input. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC,
Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA,
1–11.

4https://google.github.io/mediapipe/solutions/hands.html

484

https://cloud.google.com/automl
https://www.macrodroid.com/
https://google.github.io/mediapipe/solutions/hands.html

	Abstract
	1 Introduction
	2 Pain-O-Vision 
	3 Early Results
	4 Final thoughts
	References

