Combining DNN Partitioning and Early Exit

Maryam Ebrahimi
University of Toronto
Toronto, Ontario, Canada
maryamebr@cs.toronto.edu

Moshe Gabel
University of Toronto
Toronto, Ontario, Canada
mgabel@cs.toronto.edu

ABSTRACT

DNN inference is time-consuming and resource hungry. Partition-
ing and early exit are ways to run DNNs efficiently on the edge.
Partitioning balances the computation load on multiple servers,
and early exit offers to quit the inference process sooner and save
time. Usually, these two are considered separate steps with limited
flexibility. This work combines partitioning and early exit and pro-
poses a performance model to estimate both inference latency and
accuracy. We use this performance model to offer the best parti-
tioned/early exit DNN based on deployment information and user
preferences. Our experiments show that the flexibility in number
and position of partitioning points and placement on available de-
vices plays an important role in deciding the best output. In the
future, we plan to turn this work into a “one-click” system to train
and optimize models for edge computing.

CCS CONCEPTS

« Computing methodologies — Neural networks; Distributed
computing methodologies.

KEYWORDS

Neural networks, partitioning, early exit, edge computing

ACM Reference Format:

Maryam Ebrahimi, Alexandre da Silva Veith, Moshe Gabel, and Eyal de
Lara. 2022. Combining DNN Partitioning and Early Exit. In 5th International
Workshop on Edge Systems, Analytics and Networking (EdgeSys '22), April
5-8, 2022, RENNES, France. ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/3517206.3526270

1 INTRODUCTION

Many mobile and edge applications such as pervasive health moni-
toring [9, 10, 14] and augmented reality [3, 15] require fast and ac-
curate inference on data obtained at the edge device. Unfortunately,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

EdgeSys 22, April 5-8, 2022, RENNES, France

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9253-2/22/04...$15.00
https://doi.org/10.1145/3517206.3526270

Alexandre da Silva Veith
University of Toronto
Toronto, Ontario, Canada
aveith@cs.toronto.edu

Eyal de Lara
University of Toronto
Toronto, Ontario, Canada
delara@cs.toronto.edu

edge devices are often too resource-limited to execute state-of-the-
art deep neural networks (DNN) models efficiently [12].

Two proposed approaches that address DNN inference on the
edge networks are partitioning [5] and early exit [17, 18]. Parti-
tioning offloads part of the inference computation by splitting the
DNN'’s layers between the end-user devices, and more powerful
edge and the cloud servers. Partitioning points are usually chosen
to minimize end-to-end latency or maximize throughput. This ap-
proach effectively trades-off computation time for network latency.

Early exit allows some samples to execute just a portion of the
DNN. This approach alters the architecture of the DNN by adding
side branches that act like auxiliary classifiers. On each branch,
the sample calculates a confidence measurement. If this value is
above threshold, the sample takes the branch and exists in the DNN;
otherwise, it continues to the next layer of the DNN. This approach
effectively trades-off accuracy for inference latency.

Previous works have treated partitioning and early exit as sepa-
rate steps. Partitioning approaches assume the model has already
been trained and only consider how it will be deployed. Early exit
approaches focus on making inference with available exits and do
not consider the placement of these exits in the network topology.

Contribution: In this paper, we consider partitioning and early
exit holistically, and propose the first performance model to jointly
optimize them on multi-tier edge topologies.

Given a backbone DNN, edge network topology, device capabili-
ties, and a dataset, the performance model estimates the expected
inference accuracy and end-to-end latency including both network
and DNN computation. Our model supports any number of parti-
tions and exit points, non-consecutive placements, and positioning
the consumer of inference (destination) at either the original edge
device or in the cloud. This allows us to rapidly explore millions of
configurations, and automatically propose the optimal partitioning
and early exit configuration that minimizes latency while maximiz-
ing the accuracy.

We demonstrate the utility of the model on four difference cases,
showing the benefits of joint optimizations. For example, we show a
non-intuitive scenario predicted by the model where it is beneficial
to place later layers of the DNN on the weak early tiers of the device
hierarchy.

2 PERFORMANCE MODEL

We aim to offer a performance model that simultaneously cap-
tures DNN partitioning, early exit, and placement on hierarchical
edge networks. Given the backbone DNN, the dataset, the network

https://doi.org/10.1145/3517206.3526270
https://doi.org/10.1145/3517206.3526270
https://doi.org/10.1145/3517206.3526270

EdgeSys '22, April 5-8, 2022, RENNES, France

Block i

 —
Branch i

Figure 1: The partitioned early exit model.

topology, the capability of devices, and the preferred latency and ac-
curacy, the model is designed to help find the optimal combination
of partitioning, early exit, and placement. It must therefore support
multiple partitioning points, both consecutive and non-consecutive
placements on network servers, flexible destinations for results,
and partial DNN computation.

2.1 Definitions and Notations

Topology. We consider an M-tier network comprised of end devices
in the first tier, multiple edge or core servers, and a final cloud server
tier; each tier is connected to the next one via a communication
link. Tiers and links are indexed by j. We characterize a link j
by its bandwidth BW; measured in bits per second (bps) and by
propagation latency PL; defined as the time it takes to transmit a
bit from one end to the other. We characterize tier j’s devices with
a computation ratio R;, which denotes the time it takes to compute
inference in this tier compared to the time it takes to compute it on
a reference GPU.

DNN. The backbone DNN is a linear sequence of blocks, where
each block is a single layer or a sequence of layers that form a
single architectural element for architectures such as ResNet [4]
and Inception [16]; we currently assume exactly one connection
between subsequent blocks. The red box in Figure 1 is an example of
how we assumed the blocks are. There are N blocks in the backbone
DNN and they are indexed by i. The blocks are characterized by
the output size of the block O; in bits and the block computation
time CK; which shows the time it takes to produce the output of
block i from the input of block i (output of block i — 1).

Exits and Branches. There is a potential exit point after each block,
where we can add an early exit branch. We use the architecture of
backbone DNN’s final classifying layers as the auxiliary classifier in
each branch. Thus, there are N potential exit branches in the DNN
model. A DNN configuration is a specific selection of exit points
used for exit branches. A full configuration is when all the possible
exit branches are used. Like blocks, branches are indexed by i. The
branch i’s estimated accuracy, over all samples in the user-specified
test set, is acc;. Branch i is also characterized by branch computation
time CB; that is the time it takes to produce prediction vectors from
the output of block i (input of branch i).

The exit rate of the branch, denoted «;(T), which is the fraction
of samples that would exit at the branch i in the full configuration
DNN given threshold T. To determine whether a sample exits at
a particular branch, we use the entropy of the output vector of
the auxiliary classifier for that branch as a proxy for confidence. If

Maryam Ebrahimi, Alexandre da Silva Veith, Moshe Gabel, and Eyal de Lara

Table 1: Summary of notations used in Section 2.

Notation Description

M Number of tiers in topology

j Tier index (1 < j < M)

PL; Propagation latency between tier j and j + 1

BW; Link Bandwidth between tier j and j + 1

R; Computation ratio of devices in tier j

D Destination tier

N Number of blocks in DNN

i Block/branch index (1 < i < N)

O; Output size of block i

acc; Accuracy for branch i considering all samples

Chs Computation time to produce block i’s output (on
! reference GPU)

CB; Computation time to produce branch i’s output (on
! reference GPU)

ai(T) Fraction of samples that would exit at branch i in

full configuration DNN, given threshold T

L Number of partitions (1 < L < M)

k Partition index (1 < k < L)

Py The index of partition k’s last block

Ay The placement tier of partition k

entropy is above T, the sample moves to a deeper layer; if entropy
is below, we stop inference and use the output of the auxiliary
classifier [17].

Partitioning and Placement. We split each model to up to M disjoint
and contiguous sets of blocks, we call partitions. The first partition
always starts with block 1. However, our performance model allows
partial DNNS, in other words the last partition may exclude blocks
at the end of the backbone DNN. We consider one exit branch in
each partition, and it is the one after the last block in the partition,
as shown in Figure 1. The number of partitions is L and partitions
are indexed by k. We denote the index of the partition’s last block
(or exit branch) by Pj.. More specifically, a partition k comprises
blocks Pr_1 + 1 (the first block of the partition) to Py (the last block
of the partition). Since we also allow partial DNN, it is possible that
Pr < N. Also, always P > P._;.

Partitioning is the act of splitting the DNN into partitions by
determining Py for all L partitions. In other words, these Pjs are
the DNN configuration that we talked about before. For Figure 1,
P=125](Py=2,P,=5).

A Placement is a specific assignment of partitions to tiers. In the
performance model, we assume that all partitions must be assigned
to one tier, and all tiers have at most one partition. We define an
assignment A as a mapping from partitions to tiers: Ay = j if
partition k is assigned to tier j. Note that since we are allowing
both consecutive and non-consecutive placements, here we do not
have constraints such as Ay > Aj_; (consecutive), or Ay < Ap_;
(non-consecutive). Both cases are allowed.

Combining DNN Partitioning and Early Exit

2.2 Training and the Profiling Phase

To train a DNN with early exit, we optimize the sum of losses from
all exit branches. However, doing so for every potential partitioning
P to estimate performance would be unfeasible.

Instead, the performance model estimates the resulting accuracy
based on a quick offline profiling phase performed once for each
backbone DNN and dataset combination.We first train a full con-
figuration DNN, then profile CKj, CB;, @;(T). We run the trained
DNN on the dataset and set the block computation latency (CK;)
and branch computation latency (CB;) to the 99th percentile over
the training samples. To profile a;(T), we consider 20 thresholds
between 0 and 1 and store the fraction of samples that would exit
at branch i in the full configuration DNN, given each threshold.

We could use the accuracy of each branches i of the full con-
figuration DNN to set acc; for the performance model. However,
as confirmed in Section 3, this risks substantially underestimating
the accuracy of the resulting model since it balances the error of
more exit branches than we will actually use in the final model.
Instead, we use separate training, where we train an individual
model for each exit branch i and use its accuracy as acc;. While this
means training N models, each can be trained more quickly than a
joint model and to higher accuracy, giving us an upper bound for
potential accuracy of the branch.

2.3 Estimating Performance

Given a triplet (T, P, A) — a choice of assignment A, partition P,
and threshold T — the model estimates performance in accuracy
and latency. For brevity, we omit (7, P) and (T, P, A) from the right-
hand side of equations.

2.3.1 Exit Rate. The exit rate of each partition is the fraction of
samples that would exit from partition k’s exit branch, which is the
last exit branch of the partition. Therefore, to estimate the exit rate
of a partition k for a given threshold T, we add up the exit rates of
all branches in that partition, from Pj_; + 1, to Py:

Py
Ei(T,P) = Z a(T), 1<k<lL

i=Pp_1+1

For the first partition (k = 1), the exit rate is E1(T, P) = Zf:ll a;(T)
since it starts with branch 1, and for the last partition (k = L)
the exit rate is Ef (T, P) = Zﬁpk—1+1 ai(T), because even if the
last branch of DNN is unused, still all samples will exit from the
last used branch, so the summation is until last branch (N). As a
result, the sum of the estimated exit rate for all the partitions (used
branches) is always one.

Stay rate of partition k is the fraction of samples that do not
exit from its exit branch. These samples continue on to the next
partition for additional computation:

k
Sk(T,P) =1=)" Eqa(T)
a=1

2.3.2 Estimated Accuracy. To estimate the resulting accuracy of a
particular partitioning, we add up the rates of samples correctly clas-
sified by each partition, weighted by the exit rate of that partition.

EdgeSys *22, April 5-8, 2022, RENNES, France

In other words, the weighted mean of accuracies:

L

acc® (T, P) = Z accp Ex(T)
k=1

2.3.3 Estimating Latency. Our performance model considers three
types of latencies: computation latency of executing layers on tiers,
the propagation latency of the link between the tiers, and the latency
caused by transmitting data over a link with limited bandwidth. The
last two latencies must be tallied not only for intermediate data, but
also for sending the input to the tier assigned to the first partition
and the results to the consumer on either end of the network.

L
est _ prop trans comp
Lat®*(T,P,A) = Z Lat; ™" + Laty’ +Lat,
k=1

We next explain each component individually.

The average propagation latency Latf "P(T,P,A) ofa partition k
comprises two parts. First, the fraction of samples exited at partition
k (Ex (T, P)) must go to the destination tier (D). Second, the rest of
the samples that remain (S (T, P)) must move to the tier hosting
the next partition. We use Ay that maps the current partition k to
the tier it is assigned to, and Ay, that gives the tier assigned to
the next partition. Assuming Ay < A1, without loss of generality,
the average propagation latency incurred by partition k is:

Ak+1 D
Lat!™P(T,P,A) =S > PLj+E¢) PL;
J=Ak J=AK

The average transmission latency Latlir“"S(T, P, A) is calculated
similarly, but instead of PL; we use the transmission latency which
is the size of the output data divided by the bandwidth of the link:

Ak+1 OP D OA

trans — k k
Lat{"*"(T, P, A) = S § AR § B
J=Ak J J=Ak J

The average computation latency Latliomp (T, P, A) depends on
which samples exit at which branch. This decision depends on
the output of the branch. Thus, all samples entering a partition
(Sk(T, P) + Ex.(T, P)) incur the computation latency, regardless of
whether they will exit after it or not. We introduced a computation
ratio (R;) for devices in each tier that shows how much these devices
are slower than the reference GPU. Since CB;’s and CK;’s profiling
are done on one reference GPU, we use the ratio R; for tier j to
have a better estimation of the computation latency for that tier.

Py
Lat;"™ (T,P,A) = (S +Ex) Ra, | CBp, + Z CK;
i=Pj_1+1

In the future, we plan to estimate aggregates such as the 99th
percentile latency by tallying the latency of individual samples
from the validation set as they run through the trained DNNs from
the profiling phase. This only needs to be done once, since we can
record the output of each branch.

EdgeSys '22, April 5-8, 2022, RENNES, France

R:10 R:2.5 R:1

R:500 :
500 kb/s 10 Mb/s 500 Mb
S o 20 s

(a) Mobile Topology
R: 100 R:5 R:2.5 R:1
10 Mb/s Micro 40 Mb/s [Local 500 Mb/s [Global
Pi 10ms | Datacenter)] 10ms | cloud 50 ms Cloud
(b) IoT Topology

Figure 2: Typologies used in the evaluation.

2.4 DPotential Applications

We briefly introduce two optimization problems that can be formed
from our performance model. (P;,;) minimizes latency while con-
straining accuracy to be at least €g¢c:

argmin Lat®!(T, P, A)

T,P,A
st acc® (T, P) > eace
Al =L (Prat)
A€ [M], Pre[N], 1<k<L
|P|=L
Pr>P.q, 1<k<L

(Pacc) maximizes accuracy while constraining latency:

argmax acc®'(T,P) st. Lat®'(T,P,A) < ergs ...
T,P,A

(Pacc)

The focus of this paper is on the performance model and its impli-
cations; we aim to explore optimization in future work.

3 EVALUATION

We first provide a preliminary evaluation of the validity of the
performance model, focusing on its prediction of accuracy, exit rate,
and overall latency. We then use the model to explore four different
scenarios and discuss them in detail.

3.1 Experimental Setup

Our experiments use two networks, ResNet [4] and Inception V3 [16],
and two datasets, CIFAR10 [6] and Cat and Dog [1] for image
classification task. For each architecture and dataset combination,
we profile branch accuracy (acc;), exit rate per threshold («;(T)),
and block/branch computation time (CK; and CB;) on a reference
NVIDIA GeForce RTX 3080 GPU. Computational power R is given
as slowdown compared to the reference GPU, based on a review
of DNN inference performance [3]. From the point of view of our
model, all types of compute devices like smartphones, cameras,
smart NICs, programmable switches, etc., are simply another form
of "GPU". By using the computation ratio R, we estimate how much
these devices contribute to computation latency.

We consider two different simulated network topologies from
real-world scenarios. The mobile topology, shown in Figure 2(a),
consists of a smartwatch (R = 500) connected to a smartphone
(R = 10) using a 500 kb/s Bluetooth Low Energy link with 6ms
latency The smartphone, in turn, is connected to an edge server

Maryam Ebrahimi, Alexandre da Silva Veith, Moshe Gabel, and Eyal de Lara

(R = 2.5) at the base station using a 4G connection with 10 Mb/s
bandwidth and 40 ms latency [2, 11, 19]. Finally, the edge server
is connected to a cloud server (R = 1) over a 50 ms, 500 Mb/s
terrestrial link. The second topology, depicted in Figure 2(b), is an
industrial IoT setting that uses Raspberry Pi (R = 100) to collect
information. It is connected via slow Wi-Fi (10 Mb/s, 10ms latency
to a nearby micro datacenter (R = 5). The micro-datacenter talks
to a local cloud server (R = 2.5) via a 40 Mb/s, 10 ms link, which
in turn can connect to a more powerful but remote global cloud
server (R = 1) over a faster 500 Mb/s link with 50 ms latency.

Because we simulate the network topology on a desktop-class
machine, we focus on validating the accuracy and exit rate pre-
diction of the performance model, which are not affected by the
network. We plan to validate our network latency model in the
full paper, as well as profile computation latencies on real devices
rather than rely on a single blunt slowdown metric R. Also, in this
work we mostly focus on image classification task. We will try other
models and tasks, with different architectures and feature map sizes
in the future.

3.2 Validity of the Performance Model

We investigate the validity of our performance model with ResNet20
and CIFAR10 on mobile topology. The performance model estimates
the exit rate, accuracy, and latency of a given partitioning, assign-
ment, and threshold. Ideally, estimated accuracy and exit rate would
match those of a specialized final model that includes only the se-
lected exit points (this is time consuming, as it requires training
all the possible models from scratch). We trained final models for
28 randomly chosen partitionings and compared their predicted
performance to the actual one for all assignments and thresholds.

3.2.1 Accuracy Validation. Recall, the profiling can set acc; to ei-
ther the accuracy of a full configuration model where all branches
are jointly-trained or the accuracy of a separate model for each
individual branch (Section 2.2).

Figures 3(a) and 3(b) compare the accuracy predicted by the per-
formance model (X axis) to the accuracy of the final DNN (Y axis);
the black line depicts Y = X. Using accuracy from joint training
makes the performance model underestimate the actual accuracy
achieved by the final model, since it includes fewer exit branches
than the full configuration model. Conversely, using separate train-
ing accuracy for acc; leads to a much more accurate estimation. We
therefore use separate training accuracy in our performance model
throughout.

3.2.2 Exit rate validation. Exit rate plays an important role in the
performance model, since it affects both accuracy and latency, and
is dependant on the threshold. Figure 3(c) compares exit rates from
the performance model to those of the final DNN, averaged over
20 thresholds T. As with accuracy, the model accurately estimates
exit rates.

3.3 Using the Performance Model

We use the performance model to explore different combinations
of application requirements, backbone, dataset, and topology. For
each case, we estimate the resulting accuracy and latency of all
possible partitioning (P), placement (A), and threshold (T) triplets,

Combining DNN Partitioning and Early Exit

x 1 exit 2 exits o 3 exits

& 4 exits

o
©

Actual Accuracy
Actual Accuracy

Pred. Exit Rate

(a) Acc. (joint) (b) Acc. (separate) (c) Exit rate

Figure 3: Validating performance model estimates.

x 1 exit 2 exits o 3 exits & 4 exits
0.940 A
. 0.935 - o
=] 5 0.930
[o} [}
2 2
0.925 A
A L <
0.920 t=-=====---=----
200 300 400 500 3300 3325

Total Latency (ms) Total Latency (s)

Figure 4: Latency-accuracy trade-off plot and Pareto frontier
(left). Zoomed view of case I (right) for accuracy above 92%
(dashed line).

resulting in an accuracy-latency tradeoff plot. Figure 4 (left) shows
an example of such a plot, where every point is a possible triplet
(We only show a sample of points). The black line is the Pareto
Frontier which showing the optimal points in the trade-off. Given
application latency and accuracy requirements, a user could choose
a point on the frontier and the performance model would give the
best partitioning, placement, and threshold to achieve it.

3.3.1 Case I: Benefits of Trimming the DNN. Case I demonstrates
an application willing to forgo up to 3% accuracy for latency im-
provement. Since ResNet20 achieves a maximum of 95% accuracy
on cat and dog dataset, so we ask the question: what is the optimal
placement with minimal latency that achieves at least 92% accuracy
on the mobile topology, which corresponds to solving Pr4; with
€acc = 92 (Section 2.4). Figure 4 (right) shows a zoomed-in view
of the area of interest (92% accuracy). In this case, the best choice
(point A, 3309 ms latency and 92.32% accuracy) does not even re-
quire an early exit, merely removing the final layers of the model
and using blocks 1-6 (P = [6]). Sometimes, simply trimming the
DNN and using a partial one is the best answer, so performance
models should include this possibility.

3.3.2 Case II: Benefits of Partitioning and Early Exit. The second
case focuses on an application that requires the inference latency
to be less than 300 ms on a mobile topology. The optimal answer

EdgeSys *22, April 5-8, 2022, RENNES, France

= 1 exit 2 exits o 3 exits & 4 exits
0.75 7 i H
B E 0.780 A E
T 1
>] > i I
% 0.74 - i § 0.775 i
5 S C 1
o] A] S 0.770 A ‘_:
< p i < {/i >
03] a5 | 0.765 - @B
' 0.760 —————
280 290 300 76 78 80

Total Latency (ms) Total Latency (ms)

Figure 5: Zoomed Latency-accuracy trade-off plots of case
II (left) and case III (right); the dashed line represents the
latency requirement for each case.

in this application is achieved while we maximize the accuracy
by solving Py with a constraint on latency (e, < 300). The
zoomed Figure 5 (left) shows this scenario on ResNet20 model with
CIFAR10 dataset. The best answer, point B, has 299.9 ms latency and
74.4% accuracy using 3 partitions (P = [3, 9, 10]). Point A is the best
option with one exit point, which is far less accurate. In conclusion,
considering more than one partitioning point with early exits can
improve the latency-accuracy tradeoft.

3.3.3 Case IlI: Benefits of Non-consecutive Placement. Case Il deals
with a time-sensitive application on the IoT topology. Here, we
constrain latency is less than 80 ms (e 4 < 80). The result of
solving Py for this case with ResNet20 and CIFAR10 is shown in
5 (right). Point C shows the optimal placement A = [3, 2], which
surprisingly is non-consecutive, meaning later partitions are placed
on early tiers. While intuitively we would expect later to be placed
on later tiers (and indeed this is an implicit assumption in much
existing work), this case shows that it is not always the best choice.
Performance models should offer flexible placement.

3.3.4 Case IV: Effects of Different Result Destination. We next con-
sider minimizing latency of Inception V3 on the IoT topology with
CIFAR10, with an accuracy constraint €4cc > 80% (figure omitted
for lack of space). We find that the optimal placement differs greatly
depending on the destination of the results, even when partitioning
is the same. When the result consumer is tier 1 (the edge devices),
the optimal placement is A = [2, 3]; when it is tier 4 (the cloud),
the optimal placement is A = [2, 4]. For both cases, partitioning P
is the same. A model that does not consider the destination of the
result would yield a suboptimal configuration.

4 RELATED WORK

One of the first attempts on DNN partitioning to improve the in-
ference latency happened in Neurosurgeon paper [5]. They used
consecutive fixed placement and only one partitioning point, which
is usually located at the beginning or at the end of the model based
on their experiments.

BranchyNet [17] introduced the idea of early exit in inference
also to save time and energy. In a follow-up paper, BranchyNet

EdgeSys '22, April 5-8, 2022, RENNES, France

authors decided to use their early exit model on a hierarchical com-
putation system of end device, edge, and cloud [18]. However, the
focus of [18] is not on improving latency but more on sensor fusion
and different aggregations schemes and their effect on accuracy.

Li et al.[8] partitioned an AlexNet model with five pre-defined
early exit branches. They chose one partitioning point and one
exit point for the model while minimizing the computation and
transmission latency.

Pachecom and Couto [13] considered having two partitions,
where the first one is placed on edge servers and the second one on
the cloud servers. This work, however, does not consider a flexible
number of partitions. Moreover, the work does not explore the
latency-accuracy trade-off.

ADDA [20], and SPINN [7] explored a limited number of parti-
tions (only two) and a fixed network topology placement (first edge
and second cloud). These papers do not consider the propagation
latency nor the cost of sending the result to the destination; the
results stay on the tier they are produced.

In summary, previous works used a limited number of partitions,
network topologies, and placement strategies. Moreover, these pre-
vious works treat partitioning and early existing as separate steps.
In contrast, our performance model jointly considers partitioning
and early existing as it optimizes DNN deployment on multi-tier
edge topologies.

5 DISCUSSION

We present the first performance model for joint DNN partitioning
and early exit on hierarchical edge networks. We use it to investi-
gate the accuracy/latency tradeoff in four representative scenarios
and make the following observations: First, simply trimming the
DNN is sometimes the optimal choice, even when allowing for early
exit and partitioning; Second, having multiple partitions (and cor-
responding exit points) can indeed improve the accuracy/latency
tradeoff compared to only one or two partitions; Third, placing
later layers on weak early tiers can yield better performance than
more intuitive placements; Finally, the destination of the output
substantially affects the optimal placements.

We are working on enhancing the accuracy, exit rate, and latency
estimation of the model, and plan to validate it on additional devices
and DNNG. Using the performance model, we plan to develop an end-
to-end system that receives deployment information, backbone, and
application requirements and outputs a model with an optimized
partitioning, early exits, and deployment plan.

ACKNOWLEDGMENTS

This work was supported by Huawei Technologies Canada Co., Ltd
and Natural Sciences and Engineering Research Council of Canada
(NSERC) Grant # CRDPJ 543885-19.

REFERENCES

[1] 2017. Kaggle Cats and Dogs Dataset.
download/details.aspx?id=54765

[2] Adnan Ghayas. 2020. Average 4G LTE Speed: How Fast Is 4G LTE?
//commsbrief.com/average-4g-lte-speed-how-fast-is-4g-lte/

[3] Ramyad Hadidj, Jiashen Cao, Yilun Xie, Bahar Asgari, Tushar Krishna, and Hye-
soon Kim. 2019. Characterizing the Deployment of Deep Neural Networks on
Commercial Edge Devices. In IISWC.

https://www.microsoft.com/en-us/

https:

—_
L

=
=2

—
_

=
o)

Maryam Ebrahimi, Alexandre da Silva Veith, Moshe Gabel, and Eyal de Lara

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In CVPR.

Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason
Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative Intelligence Between
the Cloud and Mobile Edge. In ASPLOS ’17.

Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
Technical Report.

Stefanos Laskaridis, Stylianos I. Venieris, Mario Almeida, Ilias Leontiadis, and
Nicholas D. Lane. 2020. SPINN: Synergistic Progressive Inference of Neural
Networks over Device and Cloud. In MobiCom ’20.

En Li, Zhi Zhou, and Xu Chen. 2018. Edge Intelligence: On-Demand Deep
Learning Model Co-Inference withDevice-Edge Synergy. CoRR (2018).

Daniyal Liaqat, Mohamed Abdalla, Pegah Abed-Esfahani, Moshe Gabel, Tatiana
Son, Robert Wu, Andrea Gershon, Frank Rudzicz, and Eyal De Lara. 2019. Wear-
Breathing: Real World Respiratory Rate Monitoring Using Smartwatches. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 2, Article 56 (June 2019),
22 pages.

Daniyal Liaqat, Salaar Liaqat, Jun Lin Chen, Tina Sedaghat, Moshe Gabel, Frank
Rudzicz, and Eyal de Lara. 2021. Coughwatch: Real-World Cough Detection using
Smartwatches. In ICASSP.

ISLA MCKETTA. 2019. The State of Mobile 5G in the United Kingdom. https:
//www.speedtest.net/insights/blog/5g-united-kingdom-2019/p

Massimo Merenda, Carlo Porcaro, and Demetrio Iero. 2020. Edge machine learn-
ing for Al-enabled IoT devices: A review. Sensors (Switzerland) (2020).

Roberto G. Pacheco and Rodrigo S. Couto. 2020. Inference Time Optimization
Using BranchyNet Partitioning. In ISCC.

Caleb Phillips, Daniyal Liaqat, Moshe Gabel, and Eyal de Lara. 2021. WristO2:
Reliable peripheral oxygen saturation readings from wrist-worn pulse oximeters.
In WristSense.

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
Computing: Vision and Challenges. IEEE Internet of Things Journal 3, 5 (2016),
637-646.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the Inception Architecture for Computer Vision. In
CVPR.

Surat Teerapittayanon, Bradley McDanel, and H.T. Kung. 2016. BranchyNet: Fast
inference via early exiting from deep neural networks. In ICPR.

Surat Teerapittayanon, Bradley McDanel, and H.T. Kung. 2017. Distributed Deep
Neural Networks Over the Cloud, the Edge and End Devices. In ICDCS.

B. Varghese, E. de Lara, A. Ding, C. Hong, F. Bonomi, S. Dustdar, P. Harvey, P.
Hewkin, W. Shi, M. Thiele, and P. Willis. 2021. Revisiting the Arguments for
Edge Computing Research. IEEE Internet Computing 25 (2021).

Huitian Wang, Guangxing Cai, Zhaowu Huang, and Fang Dong. 2019. ADDA:
Adaptive distributed DNN inference acceleration in edge computing environment.
ICPADS (2019).

https://www.microsoft.com/en-us/download/details.aspx?id=54765
https://www.microsoft.com/en-us/download/details.aspx?id=54765
https://commsbrief.com/average-4g-lte-speed-how-fast-is-4g-lte/
https://commsbrief.com/average-4g-lte-speed-how-fast-is-4g-lte/
https://www.speedtest.net/insights/blog/5g-united-kingdom-2019/p
https://www.speedtest.net/insights/blog/5g-united-kingdom-2019/p

	Abstract
	1 Introduction
	2 Performance Model
	2.1 Definitions and Notations
	2.2 Training and the Profiling Phase
	2.3 Estimating Performance
	2.4 Potential Applications

	3 Evaluation
	3.1 Experimental Setup
	3.2 Validity of the Performance Model
	3.3 Using the Performance Model

	4 Related Work
	5 Discussion
	Acknowledgments
	References

