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Motivation

Today’s instruments and services are producing
ever-increasing amounts of data that require quick
analysis(low end-to-end latencies)
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Edge Devices and Communication Constraints

Galileo

Raspberry Pi 2

LTE: 3G, 4G, 4.5G, and 5G
LoRaWAN

SigFOx
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DSP Application Behaviors
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DSP Application Trade-off

Throughput versus response time

Throughput

Time windows to create message batches

A decreasing in network latency can impact data transfers

Increase the response time for a message

Response time (i.e. end-to-end application latency)

One-at-a-time message transfer

The response time is affected by the network latency

Near real-time solutions
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Related Work on DSP Application Placement

Dynamic placements [Cardellini:2015, buddhika:2016]

Static placements

Placement by hand [Sajjad:2016, Cheng:2015]

Communication is disregarded [Cheng:2015, Wu:2015,
Zeng:2015, Hochreiner:2016]

de Assunção, M. D.; da Silva Veith, Alexandre; and Buyya, R. Distributed data stream processing and edge
computing: A survey on resource elasticity and future directions Journal of Network and Computer Applications ,
2018, 103, 1 – 17
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SinkSink

Data
Source

Selectivity: The ratio of number of input events to output events

Data compression/expansion factor: The ratio of the size of input events 
to the size of output events
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Message
Queue

Data transfer
service

Operator 2

Dispatching
service

Resource 2
Operator 3

Operator 4

Messages
Network

Two queues: Computation and Communication
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Problem Statement / Methodology

Minimize metrics such as end-to-end application latency and
energy consumption by placing operators onto cloud and edge

resources

Physical infrastructure
capabilities

CPU and memory

Network latencies and
bandwidth

Application requirements

Selectivity

Data compression rate

CPU and Memory

Data sources and sinks
localization

Solution by approximation to achieve a good result

Evaluation (simulation and real-world) through comparison to the
state-of-the-art
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Finding Application Patterns
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Key behaviors: forks, joins, data sources and sinks

Decompose the application graph following the parallel regions
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Response Time Rate (RTR) Strategy

Response Time Rate for computational resource based on the
end-to-end application latency

Sequentially estimate the operator response time following the
upstream(s) and downstream(s) connections

Evaluate memory, cpu, and bandwidth constraints

Lpi =
∑
o∈pi
r∈R

mo〈o,r〉 × stime〈o,r〉 +
∑
r ′∈R

ms〈o→o+1,r↔r ′〉 × ctime〈o,r〉〈o+1,r ′〉
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Response Time Rate with Region Patterns (RTR+RP)
Strategy

Split the application graph following the pathways
Calculate the Response Time Rate only to the edge side

Regions definition
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Expected Contributions

To split the DSP application graph following the paths between
data sources and sinks

To evaluate the operator placement considering characteristics and
requirements of applications and resources

Latency-aware

Heterogeneity

Capability-oriented decisions
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Experimental Setup
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Results on Response Time
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Small Applications: Improve 26% (cloud-only) and 5% (LB)
Large Applications: Improve .21% (cloud-only) and 92% (LB)
RTR+RP outperforms up to 54% cloud-only
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Results on Response Time
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97.75% better for sinks in edge

1.5% worst for sinks in cloud.
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Summary of Our Contributions

A model and the DSP placement problem formalization

Two strategies to improve the response time

A performance comparison using a simulated environment
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Publications

Book Chapter

Dias de Assunção, Marcos; da Silva Veith, Alexandre (2018). Apache Spark. Encyclopedia of Big Data
Technologies, 2018. DOI: 10.1007/978-3-319-63962-837-1.

International Journal
de Assunção, M. D.; da Silva Veith, Alexandre; and Buyya, R. Distributed data stream processing and
edge computing: A survey on resource elasticity and future directions Journal of Network and Computer
Applications , 2018, 103, 1 – 17. Core: A

National Conference
da Silva Veith, Alexandre; Dias de Assunção, Marcos; Lefèvre, Laurent. (2017). Assessing the Impact of
Network Bandwidth and Operator Placement on Data Stream Processing for Edge Computing
Environments. Conférence d’informatique en Parallélisme, Architecture et Système.

International Conferences
(Submitted) C. S. Anjos, Julio; Matteussi, Kassiano; R. R. De Souza Jr, Paulo; da Silva Veith, Alexandre;
Fedak, Gilles; Luis Victoria Barbosa, Jorge; R. Geyer, Claudio. (2018). Enabling Strategies for Big Data
Analytics in Hybrid Infrastructures. International Conference on High Performance Computing and
Simulation;

(Planning) da Silva Veith, Alexandre; Dias de Assunção, Marcos; Lefèvre, Laurent. (2018).
Latency-Aware Strategies for Placing Data Stream Processing Applications onto Edge Computing
Infrastructure. International Conference on Service Oriented Computing.Core: A
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Lab day-life and Training

Lab day-life

Frequent meetings with advisors;

AVALON chair and meeting organizer.

Training
During the first year, I completed the following training
requirements:

Complementary Scientific - 64h
RSD/ASF winter school - 24h;

Parallel and Distributed Programming - 40h;

Insertion Training - 79h
FLE (University of Lyon 1) - 39h

FLE (CPU) - 40h
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International Collaborations

Rutgers University (Period of stay 11/28/2017-12/9/2017)

Fair evaluation and analysis process of stream applications
Apply hubs in the edge side to control the number of
transferred messages
Setting up a platform to launch experiments

University Carlos III of Madrid (UC3M) (Period of stay
1/29/2018-2/12/2018):

IoT-oriented scenario
Profiling and instrumenting applications
Setting up a platform to launch experiments
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Frameworks Expertise

Apache Kafka

Mosquitto

Apache Flink

Apache Storm

Apache Spark

Apache Edgent

OMNeT++

G5K

CPLEX
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Perspectives

Short Term

To conclude “Latency-Aware Strategies for Placing Data
Stream Processing Applications onto Edge Computing
Infrastructure” for ICSOC;

To improve the model with: partitions and stateful operators;
and reconfiguration phase;

To write papers with Rutgers and UC3M;

Long Term

To apply our model to a real-world evaluation using Grid’5000;

To submit a journal paper: April 2019;

The period of writing thesis: April-September 2019;

PhD defense: October 2019.
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