
An Optimal Model for Optimizing the Placement
and Parallelism of Data Stream Processing

Applications on Cloud-Edge Computing
Felipe Rodrigo de Souza, Marcos Dias de Assunção, Eddy Caron

Univ. Lyon, EnsL, UCBL, CNRS, Inria, LIP
LYON Cedex 07, France

{felipe-rodrigo.de-souza, marcos.dias.de.assuncao, eddy.caron}@ens-lyon.fr

Alexandre da Silva Veith
University of Toronto

alexandre.veith@utoronto.ca

Abstract—The Internet of Things has enabled many appli-
cation scenarios where a large number of connected devices
generate unbounded streams of data, often processed by data
stream processing frameworks deployed in the cloud. Edge
computing enables offloading processing from the cloud and
placing it close to where the data is generated, thereby reducing
the time to process data events and deployment costs. However,
edge resources are more computationally constrained than their
cloud counterparts, raising two interrelated issues, namely de-
ciding on the parallelism of processing tasks (a.k.a. operators)
and their mapping onto available resources. In this work, we
formulate the scenario of operator placement and parallelism
as an optimal mixed-integer linear programming problem. The
proposed model is termed as Cloud-Edge data Stream Placement
(CESP). Experimental results using discrete-event simulation
demonstrate that CESP can achieve an end-to-end latency at
least ' 80% and monetary costs at least ' 30% better than
traditional cloud deployment.

Index Terms—Data Stream Processing, Operator Placement,
Operator Parallelism, End-to-end Latency, Edge Computing.

I. INTRODUCTION

Advances in Internet of Things (IoT) have led to a massive
growth in the number of connected devices that generate
ever-increasing data streams requiring timely processing. A
Data Stream Processing (DSP) application is often structured
as a directed graph whose vertices represent data sources,
operators that execute a function over incoming data [1], and
data sinks; and edges that define the data interdependencies
between operators.

DSP applications are often deployed in the cloud to explore
the large number of available resources and benefit from its
pay-as-you-go business model. Moreover, the growth of IoT
is creating scenarios where geo-distributed resources at the
edge of the network act both as data sources and actuators
or consumers of processed data. Streaming all this data to a
cloud through the Internet, and sometimes back, takes time
and quickly becomes costly [1]. Recent work has explored
edge computing to address this problem by offloading DSP
operators from the cloud and placing them closer to where
data is often generated.

Cloud-edge computing is a computational paradigm that
combines cloud and edge resources in a mix of public and

private infrastructure, reducing the effects of the network in
the application performance, where the edge is composed
of IoT and Micro Datacenter (MD) resources. An inherent
problem relies upon deciding how much and which parts of
a DSP application should be offloaded from the cloud to
resources elsewhere, a problem commonly known as operator
placement. This problem, known to be NP-Hard [2], consists
of finding a set of physical resources to host operators while
respecting the application requirements. The search space can
become very large as the number of resources and their
heterogeneity increase.

Moreover, edge resources are often more constrained than
those in the cloud. When offloading operators from the cloud,
the DSP framework needs to adjust the degree of operators’
parallelism through the creation of replicas to achieve a target
throughput. The operator placement thus needs to address
two interrelated issues, namely deciding on the number of
instances for each operator and finding the set of resources
to host the instances – while guaranteeing Quality of Service
(QoS) metrics such as application throughput and end-to-end
latency. Adding an extra level of complexity, the deployment
of DSP applications in public infrastructures, such as cloud
or MD, incurs monetary costs, which the decisions regarding
parallelism, placement, and requirements for each parallel
instance should consider.

This work introduces an optimal Mixed-Integer Linear
Programming (MILP) model for determining the degree of
parallelism and placement of DSP applications onto the cloud-
edge infrastructure. We devise a solution for estimating the
number of replicas, and the processing and bandwidth re-
quirements of each operator to respect a given throughput and
minimize the application end-to-end latency and deployment
costs. Therefore, the contributions of this work are as follows:
• A MILP model called Cloud-Edge data Stream Placement

(CESP) for the joint-optimization of operator parallelism
and placement on edge and cloud computing to minimize
the application end-to-end latency and deployment costs
(section II).

• Experimental results demonstrating that CESP can im-
prove the end-to-end latency by at least ' 80% and



costs by at least ' 30% compared to traditional cloud
deployment (section III).

The rest of this paper is structured as follows. Section II
introduces CESP for joint optimization of operator parallelism
and placement. The experimental setup and performance re-
sults are presented in Section III. Related work is discussed
in Section IV, whereas Section V concludes the paper and
discusses future work.

II. PROPOSED MODEL

This works aims to propose a model for placement of
DSP applications in a three-layer computing infrastructure
that combines both public and private resources, as depicted
in Fig. 1: IoT , which contains numerous geo-distributed
resources (e.g., sensors, IoT devices), often acting as data
sources or sink actuators, but that can also be used for
deploying DSP operators. The Micro Datacenter layer also
contains geo-distributed resources but with less stringent com-
putational constraints than those in the IoT layer (e.g., routers,
gateways, and micro datacenters). The Cloud contains high-
end servers with fewer resource constraints [3].
IoT and Micro Datacenter are grouped under the Edge

computing paradigm. Hereafter the overall environment com-
prising the two-layer edge and cloud computing resources
is termed as cloud-edge infrastructure. The following sec-
tions describe the Cloud-Edge data Stream Placement (CESP)
model for addressing parallelism and placement of DSP ap-
plications onto cloud-edge infrastructure.
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Fig. 1. Overview of the target computing infrastructure.

A. System Model

The cloud-edge infrastructure is represented as a graph
GI = 〈R,P〉, where R is the set of computing resources
of all layers (RIoT ∪ RMD ∪ RCloud), and P is the set of
network interconnections between computing resources. Table
I summarizes the used notation.

A computing resource k ∈ R has CPU (CPUk) and
memory (Memk) capacities, given respectively in 100 ×
num of cores, and bytes. The processing speed of a resource
(Vk) is its CPU clock in GHz. Similar to existing work [4],
the network has a single interconnection between a pair of

TABLE I
NOTATION USED IN THE PAPER.

Symbol Description

GI and GA Graph of the infrastructure and requirements of a DSP application
R Set of computing resources ( RIoT ∪RMD ∪RCloud)
P Set of paths between computing resources
p A path p that belongs to P

ps and pd Source and destination of path p
CPUk and
Memk

CPU and memory capacity of resource k

Vk Clock speed of resource k

Bwk,l and Latk,l
Bandwidth and network latency of the path between resources k
and l

O and E Set of operators and streams between operators

SourceO, SinkO

and TransO
Subset of sources, sinks and transformation operators from O

ARj and DRj Byte arrival and departure rate of operator j
Sj and Cj Selectivity and data transformation factor of operator j
Uj Subset of operators that send data to j
ρi→j Probability that operator i sends data to operator j

Refj
cpu and

Refj
mem

Ref. values of CPU and memory use for operator j to process
Refj

data

Refj
data

Ref. data volume (bytes/s) processed to obtain Refj
cpu and

Refj
mem

Reqjcpu and
Reqjmem

CPU and memory requirements to process the data arriving at
operator j

Ωk
Speedup/slowdown w.r.t. the ref. clock V and the clock of resource
k (Vk)

x(j, l) Amount of data that operator j processes on l

f(i, k → j, l)
Amount of data flowing from operator i to j deployed on resources
k and l

Ccpu(l) and
Cmem(l)

Cost per CPU unit and cost of storing one byte in memory at
resource l

Cbw(k, l) Cost of transferring a byte over the network from resource k to l
CC and NC Computational and network costs

ATT Aggregate data transfer time
Refj

V
Processing speed of reference resource j

β Safety margin in the processing requirements of an application

computing resources k and l, with bandwidth given by Bwk,l
and latency by Latk,l.

An application deployment request is a directed graph
GA = 〈O, E〉, where O represents data source(s) SourceO,
data sink(s) SinkO and transformation operators TransO,
and E represents the streams between operators, which are
unbounded sequences of data (e.g., messages, packets, tuples,
file chunks) [1]. The application graph contains at least one
data source, one transformation operator and one data sink.

An operator j ∈ O is a processing element given by the
tuple 〈Sj , Cj ,U j , ARj〉, where Sj is the selectivity (message
discarding percentage), Cj is the data transformation factor
(how much it increases/decreases the size of arriving mes-
sages), U j is the set of upstream operators directly connected
to j, and ARj is the input rate in Bps that arrives at the
operator. When operator j is a data source (i.e., j ∈ SourceO)
its input rate is the amount of data ingested into the application
since U j = ∅. Otherwise, ARj is recursively computed as:

ARj =
∑
i∈Uj

ρi→j ×DRi (1)

where ρi→j is the probability that operator i will send an
output message to operator j, which captures how operator i



distributes its output stream among its downstream operators.
DRi is the departure date of operator i, given by:

DRi = ARi × (1− Si)× Ci (2)

which is the size of the input stream after applying the
selectivity Si and the data transformation factor Ci.

A physical representation of the application deployment
request graph is created when operators are placed onto
available resources, as depicted in Figure 2. Operators placed
within the same host communicate directly, whereas inter-
resource communication is done via the Data Transfer Service.
Messages that arrive at a computing resource are received
by the Dispatching Service, which then forwards them to
the destination operator within the computing resource. This
service also passes messages to the Data Transfer Service
when inter-resource communication is required. Each operator
comprises an internal queue and a processing element, which
are treated as a single software unit when determining the
operator properties (e.g., selectivity and data transformation
factor), and its CPU and memory requirements. Moreover, an
operator may demand more CPU than what a single resource
can offer. In this case, multiple operator replicas are created in
a way that each individual replica fits a computing resource.
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Fig. 2. Application graph adjusted to available resources (placement).

The quality of a placement depends on meeting the appli-
cation requirements. In our work, the requirements of each
operator j are expressed in terms of CPU (Reqjcpu) and
memory (Reqjmem) that the operator needs to process its
incoming byte stream.

One operator’s CPU and memory requirements can be
obtained by profiling it on a reference resource [5]. We call
Ref jcpu, Ref jmem and Ref jdata the reference values of operator
j for CPU, memory and processed data, respectively. Since
it is not possible to consume CPU and memory in factional
numbers, we round up and combine reference values with ARj

of j, to compute CPU and memory requirements, i.e. Reqjcpu
and Reqjmem, to handle its arriving data stream:

Reqjcpu =

⌈
Ref jcpu ×ARj

Ref jdata

⌉
, Reqjmem =

⌈
Ref jmem ×ARj

Ref jdata

⌉
(3)

B. Problem Formulation

The problem is modeled as a MILP with variables x(j, l)
and f(i, k → j, l). Variable x(j, l) accounts for the amount of
bytes that a replica of operator j can process on resource l,
whereas variable f(i, k → j, l) corresponds to the number of
bytes that operator replica i on resource k sends to downstream
operator replica j deployed on resource l.

CESP main goal is to minimize the deployment costs and
the time to transfer the generated data over the network, both
of which can impact the application performance. We consider
that the rate of data ingested by the sources can be estimated
and does not change over time. Moreover, resource usage
incurs a cost. The cost of using one unit of CPU and storing
one byte in memory at resource l is given by Ccpu(l) and
Cmem(l), respectively. Based on Amazon Fargate’s pricing
scheme1 we consider a large range of discrete values. The cost
of transferring a byte over the network from resource k to l
is denoted by Cbw(k, l). The overall processing and network
deployment costs of an application can be computed given the
cost per resource unit.

As the processing requirements are computed based on a
reference infrastructure and the combination of IoTs, MD
and cloud resources produce a very heterogeneous set of
resources, we apply a coefficient Ωl = Ref jV /Vl to adapt the
requirements for a resource l, in which Ref jV is the processing
speed of the resource where reference values for operator j
were obtained, and Vl is the clock speed of resource l. β refers
to a safety margin to each replica requirements aiming for a
steady state system. The computational cost incurred by the
application is computed as:

CC =
∑
l∈R

∑
j∈O

Ccpu(l)×
Reqjcpu

Ωl
× β × x(j, l)

ARj
+

Cmem(l)× Reqjmem × x(j, l)

ARj

(4)

The network cost considers the network unit cost and
amount of data transferred through any path p that crosses
link a, b. Resources at extremities of path p hosting replicas i
and j, respectively, are ps and pd. Then the network costs is:

NC =
∑
p∈P

∑
a,b∈p

∑
j∈O

∑
i∈Uj

Cbw(a, b)× f(i, ps → j, pd) (5)

Aiming to compose a multi-objective optimization function
with variables from heterogeneous domain values, CESP ap-
plies a normalization to obtain values between 0 and 1. An
overall cost is computed by combining both computation and
network costs, and then it is normalized as follows:

C =
(CC +NC)

maxCcpu + maxCmem + maxCbw
(6)

1https://aws.amazon.com/fargate/pricing



The Aggregate Data Transfer Time (ATT) sums up the
network latency of a link and the time to transfer all the data
crossing it, and is normalized by the time it takes to send an
amount of data that fills up the link capacity:

ATT =
∑
p∈P

∑
k,l∈p

∑
j∈O

∑
i∈Uj

f(i, ps → j, pd)× (Latk,l + 1
Bwk,l

)

Latk,l + 1

(7)

Treating the metrics equally – i.e., ATT and C– the objective
function aims to minimize the data transfer time and the
application deployment costs:

min : ATT + C (8)

The objective function is subject to:

Physical constraints: The requirements of each operator
replica j on resource l are a function of x(j, l); i.e., a fraction
of the byte rate operator j should process (ARj) plus the
safety margin (β). The processing requirements of all operator
replicas deployed on resource l must not exceed its processing
capacity.

CPUl ≥
∑
j∈O

Reqjcpu
Ωl

× β × x(j, l)

ARj
∀l ∈ R (9)

Meml ≥
∑
j∈O

Reqjmem × x(j, l)

ARj
∀l ∈ R (10)

There are also physical limitations imposed by the network
infrastructure. If the amount of data crossing a link exceeds its
bandwidth capacity, some delay is introduced due to network
packet queuing. The amount of data crossing every link a, b
must not exceed its bandwidth capacity.∑

j∈O

∑
i∈Uj

f(i, ps → j, pd) ≤ Bwa,b

∀a, b ∈ p;∀p ∈ P
(11)

Processing constraint: The amount of data processed by
all replicas of j must be equal to the byte arrival rate of j.

ARj =
∑
l∈R

x(j, l) ∀j ∈ O (12)

Flow constraints: Except for sources and sinks, it is possi-
ble to create one replica of operator j per resource, although
the actual number of replicas, the processing requirements,
and the interconnecting streams are decided within the model.
Equation 13 ensures that the amount of data that flows from
all replicas of i to all the replicas of j is equal to the departure
rate of upstream i to j.

DRi × ρi→j =
∑
k∈R

∑
l∈R

f(i, k → j, l)

∀j ∈ O;∀i ∈ Uj
(13)

In this way, the amount of data flowing from one replica of
i can be distributed among all replicas of j:

x(i, k)× (1− Si)× Ci × ρi→j =
∑
l∈R

f(i, k → j, l)

∀k ∈ R;∀j ∈ O;∀i ∈ Uj
(14)

On the other end of the flow, the amount of data that flows
from all the replicas of all upstream operators i to each replica
of j must be equal to the amount of data processed in x(j, l):∑

i∈Uj

∑
k∈R

f(i, k → j, l) = x(j, l) ∀j ∈ O;∀l ∈ R (15)

Domain constraints: The placement k of sources and
sinks is fixed and provided in the deployment requirements.
Variables x(j, l) and f(i, k → j, l) represent respectively the
amount of data processed by j in l, and the amount of data
sent by replica i in k to replica j in l. Therefore the domain
of these variables is a real value greater than zero:

x(j, l) = ARj ∀j ∈ SourceO ∪ SinkO;∀l ∈ R (16)

x(j, l) ≥ 0 ∀j ∈ TransO;∀l ∈ R (17)

f(i, k → j, l) ≥ 0 ∀k, l ∈ R; j ∈ O; i ∈ Uj (18)

III. PERFORMANCE EVALUATION

This section describes the experimental setup, the price
model for computing resources, and performance evaluation
results.

A. Experimental Setup

The solution is evaluated via discrete-event simulation using
a framework built on OMNET++ to model and simulate DSP
applications. The model is solved using CPLEX v12.9.0. The
infrastructure comprises 105 resources: 35 IoT resources, 35
MD servers, and 35 cloud servers. The resource capacity is
modeled according to the characteristics of DSP applications
and the layer in which the resource is located. IoT resources
are modeled as Raspberry Pi’s 3 (i.e., 1 GB of RAM, 4
CPU cores at 1,2 GHz). As DSP applications are often CPU
and memory intensive, the selected MD and cloud resources
should be optimized for such cases. The offerings for MDs are
still fairly recent. Existing work highlights that the choices of
MD resources are more limited than those of the cloud, with
more general-purpose resources. In an attempt to use resources
similar to those available on Amazon EC2, MD resources are
modeled as general-purpose t2.2xlarge machines (i.e., 32 GB
of RAM, 8 CPU cores at 3.0 GHz). Cloud servers are high-
performance C5.metal machines (i.e., 192 GB of RAM, 96
CPU cores at 3.6 GHz).

Resources within a site communicate via a LAN, whereas
IoT sites, MDs, and cloud are interconnected by a single WAN
path. The LAN has a bandwidth of 100 Mbps and 0.8 ms of
latency. The WAN bandwidth is 10 Gbps and is shared on
the path from the IoT to the MD or to the cloud, and the
latency from IoT is 20 ms and 90 ms to the MD and cloud,



respectively. The latency values are based on those obtained
by empirical experiments carried out by Hu et. al [4].

To evaluate CESP considering diverse and generic appli-
cations, we crafted multiple application graphs with various
shapes and sizes. Existing work evaluated application graphs
of several orders and interconnection probabilities, usually
assessing up to 3 different graphs [1], [6]–[8]. Using a built-
in-house python library, we built five graphs to mimic the
behavior of large DSP applications. The graphs have various
shapes and data replication factors for each operator, as de-
picted in Fig. 3. The applications have 25 operators, often more
than what is considered in the literature [9]. They also have
multiple sources, sinks, and paths, similar to previous work
by Liu and Buyya [8]. As the present work focuses on IoT
scenarios, the sources are placed on IoT resources, and sinks
are uniformly and randomly distributed across layers as they
can be acting as actuators – except for one sink responsible
for data storage, which is placed in the cloud.

The operator properties are based on the RIoTBench [10];
an IoT application benchmark that offers 27 operators com-
mon to IoT applications and 4 datasets with IoT data. The
experiments use the CITY dataset with 380 byte messages
collected every 12 seconds containing environmental informa-
tion (temperature, humidity, air quality) from 7 cities across
3 continents. It has a peak rate of 5000 tuples/s, which
is continuous and divided among sources. The remaining
properties are drawn from the values in Table II.

The Reqjcpu of an operator j can be computed based on
measurements obtained via application profiling, including
Ref jcpu and Ref jdata, using techniques proposed in existing
work [5]. In practice, the arrival byte rate ARj , the proba-
bility that an upstream operator i sends data to j, i.e. ρi→j ,
selectivity Sj , and data transformation pattern Cj could be
average values obtained via application profiling. However,
to create a worst-case scenario in terms of load, ρi→j is set
to 1 for all streams in each application request. As CESP
creates multiple replicas, ρi→j gets divided among instances
of operator j, hence creating variations on the arrival rate of
downstream operators during runtime. The operator processing
requirements estimated by the model may not be enough to
handle the actual load during certain periods, so resulting in
large operator queues. To circumvent this issue, we add a small
safety margin, the β factor, which is a percentage increase in
the application requirements estimated by CESP. A β too high
results in expensive over-provisioning. We evaluated multiple
values of β and set it to 10%, which gives a performance boost
to handle the queues without incurring high costs.

Price model: The price for resources is derived from
Amazon AWS services, considering the US East Virginia
location. The CPU and memory prices are computed based on
the AWS Fargate Pricing2 under a 24/7 execution. We consider
a Direct Connection3 for the network between the IoT site
and the AWS infrastructure. As DSP applications generate

2https://aws.amazon.com/fargate/
3https://aws.amazon.com/directconnect/

TABLE II
OPERATOR PROPERTIES IN THE APPLICATION GRAPHS.

Property Value Unit

Selectivity 0 - 20 %
Data Transformation

Factor 70 - 130 %

Reference CPU 1 - 26 CPU units
Reference Memory 1 - 27300000 bytes

Reference Data 38 - 2394000 bytes

TABLE III
COMPUTING AND NETWORK COSTS.

Resource Unit Cost

CPU CPU/month $0.291456
Memory byte/month $3.2004e-09

Direct Link IoT to AWS 10GB link/Month $1620

Link IoT to AWS Connection/Month $0.003456
KB $0.0000002

Communication IoT to cloud, GB $7.2 + 0.01 per GBIoT to MD, and MD to cloud

large amounts of data, we consider a Direct Connection of
10 GB/s. The data sent from IoT sites to AWS infrastructure
uses AWS IoT Core4. Connections between operators either
on MD or IoT resources to the cloud use Private Links5.
Amazon provides the values for CPU, memory, and network
as, respectively, a fraction of a vCPU, GB, and Gbps, but in
our formulation, the values for the same metrics are computed
in CPU units (100∗num cores), bytes and Mbps. The values
provided by Amazon, but converted to the scale used in our
formulation are presented in Table III. As the environment
combines both public and private infrastructure, deployment
costs are applied only to MD and cloud resources, the network
between these two, and the network between these two and
IoT resources. The communication between IoT resources is
free since they are on the same private network infrastructure.

Evaluated approaches and metrics: Five different con-
figurations of deployment requests are submitted for each
application during 120 simulated seconds. The reported values
for each application are averages of these five executions. Each
request has a different placement for sources and sinks, but
still respecting the rule of sources always on IoT resources
and at least one sink in the cloud. The operator properties
such as selectivity and data transformation factor vary across
configurations. Aiming to investigate the benefits of using both
IoT and MD resources, we consider two CESP versions: one
that considers all resources from the infrastructure (CESP–
All) and another that considers only IoT and cloud resources
(CESP–IC). Both implementations of the model are compared
against a traditional approach called Cloud-Only that applies
a random walk considering only cloud resources.

As for performance metrics, we consider the throughput,
which is the processing rate, in bytes/s, of all sinks in the

4https://aws.amazon.com/iot-core/
5https://aws.amazon.com/privatelink/
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Fig. 3. Application graphs used in the evaluation.

application; and end-to-end latency, which is the average time
span between the generation until the message reaches a sink.
CESP takes the throughput into account in the constraints and
the end-to-end latency indirectly by optimizing the ATT.

B. Performance Results

Throughput results are summarized in Fig. 4(a). Under most
scenarios, Cloud-Only and CESP achieve similar throughput.
However, under App1 and App2, Cloud-Only performs much
worse than both CESP versions because of the depth of the
application graphs and the fact that they have many splitter
operators in early stages, close to data sources. Given that
ρi→j = 1, the number of messages quickly increases as events
reach the splitters, and that results in a large amount of data
traversing the rest of the graph. That becomes an issue to
Cloud-Only, while both CESP versions are able to cope with
this scenario better. Apps 3-5, on the other hand, have sources
spread across many resources and shallower graphs, which
Cloud-Only can handle similar to CESP.

Processing data only in the cloud has a negative effect
on end-to-end latency, as shown in Figure 4(b). The net-
work becomes a bottleneck, especially in the LAN sections.
Messages are queued, producing a high end-to-end latency
for Cloud-Only, even in scenarios where Cloud-Only had
similar throughput. CESP tackles this network problem by
placing communicating operators closer to one another in
terms of network latency – i.e., placing sources and their
immediate downstream operators on the same resource. As
IoT resources are computationally constrained, placing com-
municating operators on the same device becomes challenging.
CESP breaks an operator into small replicas, thus allowing
this co-placement. Even if the replica processes only part of
an operator’s load, it helps by reducing the data sent through
the network, hence reducing congestion. With this process of
co-placement and operator replication, CESP reduces the end-
to-end latency by at least 80%

Table IV contains the average CPU and memory require-
ments per operator instance for the evaluated DSP applica-
tions. As Cloud-Only does not create replicas, its reported val-
ues are the average requirements per operator, computed as the
one used by both CESP implementations. Results demonstrate
that CESP divides the operator into multiple replicas, each
of which has significantly smaller requirements allowing for
better utilization of IoT and MD resources with co-placement
at the edges of the network hence experiencing lower network

TABLE IV
AVERAGE RESOURCE CONSUMPTION PER OPERATOR INSTANCE.

Cloud-Only CESP-All CESP-IC

CPU (%) Memory
(bytes) CPU (%) Memory

(bytes) CPU (%) Memory
(bytes)

App1 436.1760 8177966180 0.0018 3202 0.0019 3462
App2 550.5440 10979496789 0.0006 2790 0.0007 2521
App3 411.9440 4325880180 0.0012 4099 0.0023 3014
App4 390.2320 1861834684 0.0043 7895 0.0044 8691
App5 430.4480 6167321808 0.0028 7161 0.0030 6950

latency. By breaking an operator into replicas with lower
requirements and using IoT and MD resources, CESP achieves
better end-to-end latency and deployment costs.

Fig. 5 shows the percentage of replicas deployed in each
layer. The bottom part of each bar presents the percentage
of sources and sinks deployed in the respective layer, whereas
the top part corresponds to other operators. CESP–All provides
better end-to-end latency than CESP–IC due to the use of MD
resources. MD resources are computationally more powerful
than IoT resources, so enabling the co-placement of more
replicas on the same node. When the volume of data processed
by each operator grows, it becomes inefficient to create several
replicas on IoT resources. CESP creates multiple replicas of
communicating operators as pipelines and places each pipeline
in a different device, resulting in the end-to-end latency
improvement of CESP–All when compared with CESP–IC.
As CESP–IC does not use MD resources, it continues to
explore IoT resources, by creating multiple replicas combined
into pipelines into different devices. The downside of using
IoT resources for this is that the pipeline is shorter, requiring
the use of the network to communicate with the downstream
replica, resulting in higher end-to-end latency.

Fig. 6 shows the deployment costs. Cloud-Only does not
consider IoT resources, which are free of charge, and does
not reduce the amount of data traversing the Internet. It yields
the highest deployment cost, both computational and network.
Along with the end-to-end latency gain from co-placing small
replicas into IoT resources, CESP–IC explores such devices
as they are free of charge. CESP–All, which explores MDs in
addition to IoT resources, is able to deploy more replicas at
the edges of the network, thus reducing the network usage and
costs. CESP–All experiences the cheaper deployment costs.
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Fig. 4. Throughput and end-to-end latency under Cloud-Only and CESP.
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Fig. 5. Replica distribution per resource for both CESP versions.
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Fig. 6. Computational and network costs under Cloud-Only, CESP–All and CESP–IC.

IV. RELATED WORK

Traditionally DSP frameworks such as Apache Storm,
Apache Flink, among others were conceived to run on clusters

of homogeneous resources and on cloud infrastructure. To



minimize the end-to-end latency of processing events and
the amount of traffic that traverses public networks, existing
work has introduced novel DSP architecture for placing certain
operators or tasks at the edges of the Internet, often closer to
where the data is generated [11].

The problem of placing DSP dataflows onto heterogeneous
resources has been shown to be at least NP-Hard [2]. More-
over, most of the existing work neglects the communication
overhead [12], although it is relevant in geo-distributed infras-
tructure [4]. Likewise, the considered applications are often
oversimplified, ignoring operator patterns such as selectivity
and data transformation [13].

Effort has been made on modelling the operator place-
ment on cloud-edge infrastructure, including sub-optimal so-
lutions [14], [15] while others focus on end-to-end latency
while neglecting throughput, application deployment costs,
and other performance metrics when estimating the operator
placement [1], [16]. There are also solutions on models that
ignore operator parallelism [17], which is an issue when
dealing with IoT constrained resources. Existing work also
explores Network Function Virtualization (NFV) for placing
IoT application service chains across cloud-edge infrastructure
[18]. Solutions for profiling and building performance models
of DSP operators are also available [5].

Although the dataflow model followed by several DSP
solutions shares many similarities with workflow schedul-
ing [19], it presents unique challenges related to handling
unbounded streams of data that can have varying load, and
the characteristics of operators found in DSP graphs.

This work addresses operator placement and parallelism
across cloud-edge resources considering computing and com-
munication constraints. The solution offers a framework to
model both issues as an optimal MILP problem and solve it
by optimizing the aggregate data transfer time, and application
deployment costs, considering the pricing scheme of a major
infrastructure provider.

V. CONCLUSION

This paper presented CESP, a MILP formulation for the
operator placement and parallelism of DSP applications that
optimizes the end-to-end latency and deployment costs. CESP
combines profiling information with the computed amount of
data that each operator should process, to obtain the processing
requirements so that the operator can handle the arriving load.
CESP also creates multiple lightweight replicas to offload
operators from the cloud to the edges of the network hence
obtaining lower end-to-end latency.

Two versions of CESP were evaluated using various applica-
tions with different configurations in terms of selectivity, data
transformation pattern, and CPU and memory requirements.
Both versions provide at least ' 1% throughput improvement,
' 80% end-to-end latency reduction and deployment costs
' 30% cheaper than a traditional placement scheme. The
results also show that by using MD resources, the end-to-end
latency can be improved by at least ' 6% and deployment
costs reduced by ' 4%. Future work aims to improve the

solution robustness by relaxing assumptions on constant event
arrival rate and static IoT infrastructure.

REFERENCES

[1] V. Cardellini, F. Lo Presti, M. Nardelli, and G. Russo Russo, “Optimal
operator deployment and replication for elastic distributed data stream
processing,” Concurrency and Computation: Practice and Experience,
vol. 30, no. 9, p. e4334, 2018.

[2] A. Benoit, A. Dobrila, J.-M. Nicod, and L. Philippe, “Scheduling linear
chain streaming applications on heterogeneous systems with failures,”
Future Gener. Comput. Syst., vol. 29, no. 5, pp. 1140–1151, Jul. 2013.

[3] D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and A. Y.
Zomaya, “Secure and sustainable load balancing of edge data centers
in fog computing,” IEEE Communications Magazine, vol. 56, no. 5, pp.
60–65, 2018.

[4] W. Hu, Y. Gao, K. Ha, J. Wang, B. Amos, Z. Chen, P. Pillai, and
M. Satyanarayanan, “Quantifying the impact of edge computing on
mobile applications,” in Proc. of the 7th ACM SIGOPS Asia-Pacific
Workshop on Systems. ACM, 2016, p. 5.

[5] H. Arkian, G. Pierre, J. Tordsson, and E. Elmroth, “An experiment-driven
performance model of stream processing operators in Fog computing
environments,” in ACM/SIGAPP Symp. On Applied Computing (SAC
2019), Brno, Czech Republic, Mar. 2020.

[6] T. Hiessl, V. Karagiannis, C. Hochreiner, S. Schulte, and M. Nardelli,
“Optimal placement of stream processing operators in the fog,” in 2019
IEEE 3rd Int. Conf. on Fog and Edge Computing (ICFEC). IEEE,
2019, pp. 1–10.

[7] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu, “Elastic scaling for
data stream processing,” IEEE Tr. on Parallel and Distributed Systems,
vol. 25, no. 6, pp. 1447–1463, 2013.

[8] X. Liu and R. Buyya, “Performance-oriented deployment of streaming
applications on cloud,” IEEE Tr. on Big Data, vol. 5, no. 1, pp. 46–59,
March 2019.

[9] S. Zeuch, B. D. Monte, J. Karimov, C. Lutz, M. Renz, J. Traub, S. Breß,
T. Rabl, and V. Markl, “Analyzing efficient stream processing on modern
hardware,” Proc. VLDB Endow., vol. 12, no. 5, pp. 516–530, Jan. 2019.

[10] A. Shukla, S. Chaturvedi, and Y. Simmhan, “Riotbench: A real-
time iot benchmark for distributed stream processing platforms. corr
abs/1701.08530 (2017),” arxiv. org/abs/1701.08530, 2017.

[11] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal operator
placement for distributed stream processing applications,” in Proc. of the
10th ACM Int. Conf. on Distributed and Event-based Systems. ACM,
2016, pp. 69–80.

[12] B. Cheng, A. Papageorgiou, and M. Bauer, “Geelytics: Enabling on-
demand edge analytics over scoped data sources,” in IEEE Int. Cong.
on BigData, 2016.

[13] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and V. Vlassov,
“Spanedge: Towards unifying stream processing over central and near-
the-edge data centers,” in 2016 IEEE/ACM Symp. on Edge Comp., Oct
2016.

[14] M. Taneja and A. Davy, “Resource aware placement of iot application
modules in fog-cloud computing paradigm,” in IFIP/IEEE Symp. on
Integrated Net. and Service Mgmt (IM), May 2017.

[15] W. Chen, I. Paik, and Z. Li, “Cost-aware streaming workflow allocation
on geo-distributed data centers,” IEEE Transactions on Computers, Feb
2017.

[16] C. Canali and R. Lancellotti, “GASP: genetic algorithms for service
placement in fog computing systems,” Algorithms, vol. 12, no. 10, p.
201, 2019.

[17] E. Gibert Renart, A. Da Silva Veith, D. Balouek-Thomert, M. D. De
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