
BSPonP2P: Towards Running Bulk-Synchronous Parallel
Applications on P2P Desktop Grids

Rodrigo da Rosa Righi, Gustavo Rostirolla, Vinicius Facco Rodrigues, Alexandre Veith,
Cristiano André da Costa

Applied Computing Graduate Program, Unisinos, Av. Unisinos, 950, São Leopoldo, Rio Grande do Sul, Brazil

Abstract— Today, BSP (Bulk-Synchronous Parallel) repre-
sents one of the most used models for writing tightly-coupled
parallel programs. A BSP application is divided in one or
more supersteps, each one ending with a synchronization
barrier. As resource substrates, commonly clusters and even-
tually computational grids are used to run BSP applications.
In this context, we investigate the use of collaborative
computing and idle resources to execute this kind of demand,
so we are proposing a model named BSPonP2P to answer
the following question: How can we develop an efficient and
viable model to run BSP applications in P2P Desktop Grids?
We answer it by providing both process rescheduling and
checkpointing, enabling BSPonP2P to address dynamism at
application and infrastructure levels and resource hetero-
geneity. The results concern a prototype that ran over a
subset of the Grid5000 infrastructure, showing encouraging
results on using collaboration and volatile resources for
obtaining High Performance Computing effortlessly.

Keywords: Bulk-Synchronous Parallel, P2P, Process Reschedul-
ing, Checkpointing, Performance

1. Introduction
The widespread use of parallel machines crucially depends

on the availability of a model of computation simple enough
to provide a convenient basis for software development.
Concerning this, the Bulk Synchronous Parallel (BSP) model
of computation has been proposed by L. G. Valiant as an uni-
fied framework for the design and programming of general
purpose parallel computing systems [17]. BSP applications
are composed by a set of processes that execute supersteps,
each one divided into three phases: (i) local computations
on each process; (ii) global communication actions and; (iii)
a synchronization barrier. The barrier phase should wait for
the slowest process before starting the next superstep, so an
efficient process-processors mapping is crucial for getting an
acceptable performance [8]. This topic is yet more relevant
when considering heterogeneous (different processing and
network bandwidth capacities) and dynamic (fluctuations in
network bandwidth and processors’ load) environments [12].

BSP represents a common used model for writing success-
ful parallel programs that exhibit phase-based computational
behaviors, being extensively used to organize MPI (Mes-
sage Passing Interface) codes [6]. As deployment machines,

this programming model has been used on clusters and
computational grids [7]. Particularly, this kind of grid is
known by normally presenting a centralized or hierarchical
architecture, high-speed networks linked to the Internet
and nodes that slowly change their participation behavior
along the time [5], [7]. In addition, for using one of the
aforementioned parallel machines, the user must either buy
the computational and network infrastructures or present a
previous contract/agreement with the institution that host
them. Concerning this landscape, we started the study of
low cost and collaborative environments to take profit of end
nodes around the Internet effortlessly. This effort culminated
in an architecture proposed by Zhao, Liu and Li named P2P
Desktop Grids [19] (PDG). Although joining the power of
idle resources, a high level of dynamism with the sudden
leaving of users (and consequently, reducing also the avail-
able CPU cycles of the system) and the use of worldwide-
scale and Internet-based connections are challenges when
associating this architecture with the purpose of HPC (High
Performance Computing). In this way, our work presents the
following problem statement: How can we explore collabo-
rative computing in PDG to run BSP applications efficiently?

Aiming at answering the posed question, we are proposing
BSPonP2P - a model that encompasses an infrastructure,
overlay network, scheduling algorithms and runtime man-
agement to run BSP programs in PDG. Unlike computational
grids, the target architecture is not managed by skilled
professionals. BSPonP2P addresses collaborative computing
at middleware level, where programmers do not need to
change their applications in order to execute them in a
P2P setting. Taking profit of the formal organization of
BSP programs and mixing structured and nonstructured P2P
deployments, the proposed model addresses performance but
do not putting away the need of a fault tolerance layer that
is crucial on PDG. This article describes BSPonP2P and its
runtime strategies to answer the problem statement. More-
over, we also present its evaluation with a BSP scientific
application in a real Grid infrastructure. In the best of our
knowledge, BSPonP2P is the first proposal to cover BSP
programs and P2P settings, being the pioneer on covering
round-based parallel applications with spatial decoupling in
an easier and costless way.

The remainder of this article will first introduce the
related work in Section 2. Section 3 describes BSPonP2P

374 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

in details, demonstrating its rationales and contributions.
Evaluation methodology and the discussion of the results are
presented in Sections 4 and 5, respectively. Finally, Section 6
emphasizes the scientific contribution of the work and notes
several challenges that we can address in the future.

2. Related Work
This section briefly presents initiatives to run applications

on collaborative environments. Focusing to support Bag-of-
Tasks (BoT) applications, the authors in [1] present a generic
content-based publish/subscribe system called DPS. More-
over, Leite et al. [10] propose a load balancing architecture
using a P2P-like structure for desktop grids.

Besides BoT, the master-slave approach is addressed in
[4], [14], [15], [18]. Balasubramaniam et al. [2] and Byung
et al. [16] presented aproaches targeting Desktop Grids, and
Godfrey et al. [4], Shudo [15], Senís et al. [14] and Wu and
Tian [18] present aproaches targeting PDG.

Concerning BSP parallel applications, both Mizan [8] and
Camargo et al. [3] are representative for heterogeneous and
dynamic environments. Mizan is a dynamic load balancing
that captures data from computation and communication
metrics. Camargo enable the use of not only idle processor
cycles, but also unused disk space of shared machines, and
a checkpointing-based mechanism.

Table 1 presents a summary of the aforementioned sys-
tems and algorithms. As shown, the initiatives approach
different models for collaborative environments and assorted
scheduling strategies. We can note that few works are focus-
ing on metrics different of computation, as well as on failure
control. In this regard, we observe a research opportunity
to work with tightly-coupled applications, such as BSP, on
collaborative environments, offering pertinent strategies to
cover BSP features on highly dynamic and heterogeneous
substrates.

3. BSPonP2P: Proposal to Run BSP
Programs in P2P Desktop Grids

Considering both the Internet advances and the ease on
acquiring computing resources (in this case, personal com-
puters, tablets and smartphones), we observe the increase
adoption of collaborative computing to run any kind of ap-
plications at a low financial cost. The simple idea is to profit
idle CPU cycles, since the aforementioned resources are
used mostly to access social networks, Internet queries and
programs that consume a low computational substrate [9].

In this regard, we are proposing the BSPonP2P model
to design how BSP applications would run in PDG effi-
ciently. To accomplish this, BSPonP2P proposes a network
overlay architecture, as well as strategies to turn viable
the matching involving collaborative infrastructure and the
BSP programming model. To accomplish this viability, we
are exploring both process checkpointing and rescheduling.

Checkpointing brings reliability and performance saving to
the model: when someone leaves the system in a superstep
then a checkpoint is used to restart the application in the
last saved point. Rescheduling, in its turn, aims at covering
dynamism, since both nodes and networks can become
overloaded at application runtime; so, process can be on-
the-fly migrated to novel locations to improve application
performance. Particularly, rescheduling is highly pertinent
in BSP programs, since they are composed by supersteps
limited by a synchronization barrier in which the slowest
process always bounds the parallel performance.

3.1 Network Overlay Architecture
BSPonP2P architecture was developed taking in mind

both structured and unstructured P2P networks, as shown
in Figure 1. Firstly, we are working with a structured ring-
based network following the so-called Chord P2P proto-
col [11]. Chord uses a DHT and a Finger table to provide
message exchange and routing in an efficient, scalable and
secure way. This kind of network is used to connect nodes
defined as Managers. We are using a timer denoted tto

(time-to-organize) to reorganize the Managers in the Chord
ring, aiming at optimizing communication latency among
them. Each Manager is responsible for a specific cluster,
where the cluster here means a parallel machine, a local
network, a mobile device, or a single computer. Structured
P2P networks aim at providing performance for large scale
deployments [19], emphasizing our design decision for us-
ing them for Managers Interactions because of we plan
to compose a worldwide scale architecture. A cluster, in
turn, is organized in an unstructured manner. This decision
was taken because this kind of organization offers better
flexibility and dynamism with heterogeneous and unstable
resources. The nodes inside a cluster are named End Nodes,
or only Nodes, and they are responsible to execute the BSP
applications actually.

���������������������������

����������������������

���������
�������

��������������
�����������

�������

Fig. 1: Computational Overlay Network with two commu-
nication levels: (i) among the Managers; (ii) between a
Manager and an End Node.

Each resource can act as a Manager or End Node. We
created a Computational Overlay Network (CON) to manage
message routing, scheduling, as well as the entrance and the
leaving of a resource in the infrastructure. Each cluster i has
a maximum of ni End Nodes. This value is configurable and
the administrator can change it according to network size.
Thus, the first resource will act as a Manager and the others

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 375

Table 1: Comparison among initiatives to run parallel applications on collaborative environments.
Initiatives Target

system
Model
application Migration Data

Replication
Load
balancing Monitoring

Anceaume et al. [1] PDG Bags of Task - - Computation Computation
Balasubramaniam et al. [2] Desktop Grids Master/Slave - - Computation Computation
Camargo et al. [3] PDG BSP yes yes Computation Computation
Godfrey et al. [4] PDG Master/Slave yes yes Computation Computation
Khayyat et al. [8] Desktop Grids BSP yes no Computation Computation
Leite et al. [10] PDG Bags of Task yes yes Work Stealing Computation
Sentís et al. [14] PDG Master/Slave yes no Computation Computation and Memory
Shudo et al. [15] PDG Master/Slave yes no Computation Computation
Byung et al. [16] Desktop Grids Master/Slave yes no Computation Computation
Wu et al. [18] PDG Master/Slave yes yes Computation Computation

up to ni will serve as End Nodes to the composed cluster
i. After reaching ni, another Manager is selected and then,
other cluster is created. Upon entering the network, an End
Node must report how much of their computing resource will
be available to BSPonP2P. The resource’s owner sets this
parameter. By default, 100% of CPU is available when the
user is not using the equipment or a percentage is employed,
otherwise.

Aiming at getting End Node data periodically, a Manager
sends query requests at intervals of ti seconds. Each Man-
ager defines ti for cluster i at launching time. The queries
are sended in a random Walk strategy. By definition, if the
Manager does not receive a response from an End Node
two consecutive times, then the Manager disconnects it from
the CON. This procedure is executed to ensure that the
Node is connected and able to execute a process from a
future demand. Each cluster with less than n End Nodes is
a candidate to receive the next incoming resource. Among
them, the cluster with the lowest identification is actually
chosen to host this new resource.

CON automatically reorganizes the network when a node,
either a Manager or End Node, suffers a crash or intention-
ally leaves the collaborative infrastructure. In the case of a
Manager, the oldest End Node in the cluster (comparing the
stay time in the CON, and not other metrics like compu-
tational power since a Manager is responsible mainly for
routing) is promoted to be the Manager. This new Manager
is then updated with the data about cluster itself, supersteps
in execution (if any) and the applications running in the
resources under its responsibility. If an End Node crashes
and it was executing supersteps of one or more applications,
the Manager has partial data about the execution and can
select other peer in accordance with the scheduling function
to relaunch the application from the last saved checkpoint.

3.2 Scheduling and Runtime Strategies
This subsection describes how are deploying a BSP

application in a P2P setting, showing also the runtime
strategies to address performance and fault tolerance. We are
targeting phases-based applications such as BSP, however the
application model applied in BSPonP2P diverges from the
traditional BSP [17], since this last one was firstly defined
for homogeneous clusters.

The communication within the CON is divided into two

levels, depending on the node’s role: the first level comprises
communication among the Managers, while the second level
represents an interaction between a Manager and an End
Node. After this introduction, the application launching
occurs as follows. An End Node has a BSP demand and
submits it to its Manager (the Manager just acts as organizer,
it doesn’t process the demand), informing the binary code
and the number of process to run the application. Using the
first-level communication, the mentioned Manager chooses
the target cluster for each process.

The second-level communication is important to notify a
Manager to choose an End Node under its responsibility to
run a process. After selecting one End Node per process, an
Execution Network is composed as depicted in Figure 2. It
comprises a direct connection of each End Node (computing
resource) to the Manager that started the BSP demand. This
Manager will coordinate process communication and will
pass the final result to the requester. The idea here is to save
hops while performing communication actions among the
BSP processes.

�������������
������������
���������������

���������������

�����������
���������
�������

Fig. 2: Creation of an Execution Network, in which the
Manager that receives the BSP demand acts as a gateway
that directly communicates with all End Nodes involved in
the BSP computation.

The evaluation of the first level will decide which cluster
will execute a particular process. For that, we are using
a decision function denoted PM (Potential of Migration)
proposed by Righi et. al. [12] in the MigBSP proposal.
PM is computed through Equation 1, which receives as
inputs i and j, a process and a cluster, respectively. In
this context, Comp, Comm and Mem denote computation,
communication and memory metrics, respectively. The larger
the PM value, the most profitable is the target cluster j in
receiving a process i. Each process is tested against each
cluster and the largest PM value indicates the cluster for
the process. Different from MigBSP, BSPonP2P uses PDG,

376 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

which implies in a modification of the computation metric in
accordance with Equation 2. T (i) and Set(j) are inherited
from MigBSP [12], and denote the computational time of
process i in the last superstep and the relative performance
of the cluster j, respectively. BSPonP2P adds XResource and
XUser with the following objectives:

• User: here, XUser(j) is used to evaluate the users that
either are running or have already ran applications in
the resources of the cluster j in evaluation. If the users
in the aforementioned context present a behavior of low
usage of CPU power, this metric is close to 1. On the
other hand, the value is close to 0 if the historical data
does demonstrate a higher utilization of CPU cycles.

• Resource: The metric XResource(j) denotes an arith-
metic average of the resources utilization in the cluster
j. The idea is to work with a historical data in this met-
ric, where close to 1 represents a lower usage of CPU
or close to 0, otherwise. Thus, User metric analyses
the pattern of access by the users, while the Resource
observes the utilization degree of the resources.

PM(i, j) = Comp(i, j) + Comm(i, j)Mem(i, j) (1)

Comp(i, j) = (
XResource(j) +XUser(j)

2
).T (i).Set(j)

(2)
Table 2 presents an example of how we are computing

both User and Resouce metrics. The first column of this
table refers to the captured observations on each cluster. In
this scenario there are three users, named X , Y and Z, and
two clusters, C1 and C2. C1 is composed by machines the
A and B, while C2 includes machines C and D. Assuming
the distribution among the clusters as presented in Table
2, the computation of the metric Users in cluster C2 will
result 25% (10%+20%+30%+40%

4) while the Resource usage
in cluster C2 will result in 15% (10+20

2). Note that the
user Z does not have influnce in the User metric for cluster
C2, because it is not performing any task in cluster C2. In
the same way, Resource for C1 is 53.33% (30%+40%+90%

3),
while User for this cluster is 38% (10%+20%+30%+40%+90%

5).

Table 2: Example of infrastructure usage, including 2 clus-
ters and 3 users

Observation User Machine Cluster % of Machine use (CPU)

1 X C C2 10
1 Y D C2 20
2 X A C1 30
2 Y A C1 40
2 Z B C1 90

The evaluation with the second communication level is
used to define which End Node in a cluster will run a specific
process. The definition of the executor node is made based
on the availability of the equipment. At this point, a simple

assessment is made, where samples of at least three ratings
and a maximum of ten reviews of availability (amount of
computational resource available) are used. The samples are
based on past records received by the Manager.

As runtime strategies, BSPonP2P offers process
rescheduling and checkpointing. Both take place after
ending a particular superstep, this point refers to a
consistent global state of the distributed system. The idea
is to offer a runtime management that aims at reducing
the load imbalance among the processes, so decreasing
the execution time of each superstep. Rescheduling tests
are done not at each superstep, but the superstep index is
defined in accordance with the MigBSP parameter called
↵. The system is launched with a predetermined value of
↵, which represents the interval of supersteps to evaluate
process rescheduling. At each ↵ supersteps rescheduling
may occur if there is another most suitable cluster to
execute a process according to PM function.

Aiming at dealing with dynamic environments, BSPonP2P
profits from the phases-based organization of a BSP ap-
plication to take a distributed snapshot of the application.
This is done by saving a local checkpoint in each process,
representing a basic BSPonP2P mechanism for addressing
fault tolerance. The idea consists of not restarting the ap-
plication from scratch in the presence of a node failure or
outgoing user. Only data of the last superstep is saved, since
all processes advance in a round-based fashion. This feature
allows a time reduction if happens any crash in the system,
for example, if anyone that is participating in a superstep
leave the network (a Manager or End Node), the model
have been projected to restart from the last point saved. The
execution only lose a few supersteps and it doesn’t need to
restart from the beginning of the demand.

3.3 Observing Different Scenarios and Goals
The BSPonP2P’s differential approach is highlighted by

the adoption of process migration and checkpointing. Fig-
ure 3 illustrates different scenarios after running a BSP ap-
plication using BSPonP2P. Scenario i represents the simple
execution of a BSP application, disabling any service or
scheduling functionality. The End Node-process mapping is
fixed, being defined by the user.

Scenario ii adds the scheduling calculus in the first and
second levels of the CON. Scenario i always outperforms
scenario ii, since this last one adds dynamic scheduling over-
head. Situations c, d, e and f represent the possibilities found
in scenario iii. This scenario enables process checkpointing
and rescheduling. Situations c and d present not suitable
migrations, or yet, migrations were profitable but the number
of remaining supersteps are not so large to get back the time
in migration investment.

Both situations e and f represent the success in running
BSPonP2P. Although situation e has a larger time when
compared to situation a, it was computed using the check-

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 377

pointing strategy. Therefore, we can gain by not needing to
restart the application from the first superstep in the case of
a node crash. Process migration was responsible for a better
resource usage and performance in the last situation.

�

�

�

�

�������

����

�

�

�

�

�

� �

� �

� � �

�

�

�

�

���������������������

�������������������

�����������������

���������������������

�������
�������������������

���

���

���

���

���

���

����

����������

�����������

������������

Fig. 3: Different execution scenarios of BSPonP2P. Both
situations e and f of scenario iii are considered the main
BSPonP2P’s goal.

4. Evaluation Methodology
The evaluation was performed using SimGrid1, a de-

terministic scientific instrument to study the behavior of
scheduling algorithms in heterogeneous platforms, due to
its high adoption in the scientific community. We applied
simulation in three different scenarios using the Simgrid’s
MSG module: (i) Simple application execution; (ii) Appli-
cation execution along with BSPonP2P scheduler without
migration or checkpoint; (iii) Application execution with
BSPonP2P scheduler with migration and checkpoint. The
scenarios are graphically presented in Figure 3. The objective
of the mentioned scenarios is to show the overload imposed
by BPSonP2P (comparing scenarios i and ii), and the gain or
loss of time when migration is enabled (comparing scenarios
i and iii).

We also performed a recovery validation: in this case, we
evaluated the time to resume the execution with checkpoint
and compared with the time without this service. Without the
checkpoint when a fault occurs, the system restarts from the
beginning of the execution, instead of resuming from the last
saved barrier as explained before. The comparison will be
based on the exit of a host running a process in BSPonP2P.

We implemented a BSP application for computational
fluid dynamics based on the principle of the Lattice Boltz-
mann Method (LBM) [13]. Each superstep is modeled by
dividing the data in blocks, where each process performs
a local computation using the block and, after that, sends
updated data to its neighbor at the right. In order to perform
the tests we allocated the first 15 nodes from each of the
following Grid5000 clusters2: chimint and chicon located
in Lille, paradent from Rennes, grephene from Nancy, gdx
from Orsay, capricorne from Lyon, adonis from Grenoble,
borderplage from Bordeaux, pastel from Toulouse and suno
from Sophia, giving a total amount of 150 nodes.

1http://simgrid.gforge.inria.fr
2Details about computing resources and network connections can be

found at http://www.grid5000.fr

Tests conducted in each scenario suffered the variation
of three parameters: (i) ↵, which defines the interval of
supersteps to perform the migration process starting with 4, 8
and 16 (same values used by [12]); (ii) Amount of supersteps
whose values tested were 10, 50, 100, 500, 1000 and 2000;
(iii) Amount of processes, assuming the values 11, 26, 51
and 89, randomly chosen to represent the environment that
is found in PDG.

In order to represent the user interaction with the nodes
and the variation of cluster availability we also created
weight vector which represents the amount of computation
available for the process to be executed. This values varied
between 30 and 99 percent during all the executions chang-
ing at each superstep.

5. Discussing the Results
This section presents the results obtained when executing

the LBM in the PDG varying the ↵ value, number of
supersteps and processes against each scenario. First we are
going to evaluate BSPonP2P in the aforementioned scenarios
without any machine leaving the CON. After, we evaluate
the variation in the average time of supersteps and finally
the checkpoint activation impact in the execution time when
a machine leaves the CON.

5.1 Analysis of the Model Parameters
Analyzing the changes in the execution time according

to the variation of the parameters presented above we can
observe that the load imposed by BSPonP2P checkpointing
and migration varies between an improvement of 6% with 26
processes, 2000 superstep and ↵ equal to 16 and an overload
of 17% with 89 processes, 100 supersteps and ↵ equal to 4.
Yet, in 76% of the cases the overload imposed was smaller
than 5% in the total execution time. Also with ↵ equal to
4 scenario iii is always better than scenario ii and with ↵

equal to 8 scenario iii is better than scenario ii in all the
cases with more than 11 processes.

The variation in execution time with different ↵ values
is better observed in Figure 4 where a comparison of the
execution time between scenarios i and iii is presented. With
the number of supersteps above 500 there is a decrease in
the execution time, varying between -2.9% and -4.5% when
↵ is equal to 4, -1.6% and -4.5% when ↵ is equal to 8, and
-3.8% to -5.5% when ↵ is 16.

When evaluating the average time between each superstep,
presented in Figure 5, we can observe a variation between
23.4 seconds with ↵ 4 and 20.1 seconds with ↵ 16. In
some cases the migration do not present an improvement
in the execution time, nevertheless with all ↵ values there is
an improvement in the average time between supersteps if
compared to it’s initial value (i.e. after the first migration).

The increase found in migration 3 and 4 in Figure 5 with
↵ equal to 8 is given by the increased use of resources. The
cluster elected to run the migration 4 had PM equal 2.89 and

378 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

�
��

�

�
��

�

�
��

�

��
��

�

��
��

�

��
��

�

�
��

�

�
��

�

�
��

�

��
��

�

��
��

�

��
��

�

�
��

�

�
��

�

�
��

�

��
��

�

��
��

�

��
��

�

����

���

���

���

���

��

��

��

��

��

���

�� �� ��� ��� ���� ����

�
�

��
���

�
��
��

�
��

�
�

�
�

�

��������������������

������� ������� ��������

Fig. 4: Relative time variation of scenario iii when compared
to scenario i varying the number of supersteps with 26
processes.

the average use of the cluster was 15% (18% of use among
users and 12% utilization of the equipment). In the step that
the migration 4 occurred the cluster PM which was running
the previous superstep was 2.72. The reduction comparing
the PMs was generated from the historical consumption
of 18% found in the cluster that was running step 3, in
this context the process was migrated to higher PM. Thus,
the small increases found in Figure 5 are generated by
differences in consumption of the user equipment and the
network participants that occurred after the migration.

����

����

����

����

����

����

����

����

����

� � � � � � � � � � �� �� �� �� �� ��

�
��

��
�
�
��

�
�
�
��

��
�
�
��

��
�
��
�
�
�
�
�
�
��

���������

������� ������� ��������

Fig. 5: Average time of supersteps in each migration with
26 processes varying the ↵ value.

This dynamism in the resource utilization generated by the
participants of the network leads to a tendency of unbalanced
tasks. In Figure 6 we can observe that despite of alpha and
amount of processes variation the migrations occurred along
the entire execution.

This variation is also confirmed observing Figure 7 that
shows the final tasks allocation with 51 processes and
all ↵ values. Despite of better computational resources of
cluster Graphene (144 CPUs Xeon X3440, 16 GB memory
and Infiniband-20G) when compared to Chicon (52 CPUs

�

�

�

���

��

��

��

����������

�
�
�
�
��
��
��
�
��
��

��
��

Fig. 6: Migrations distribution along the application execu-
tion varying the ↵ value and number of processes.

Opteron 285, 4 GB memory and Myri-10G) for instance
no migration pattern to this cluster can be detected. This
behavior is highly related to Equation 2 which represents
the computation resources usage by the user and equipments
and is also used in migration calculus.

������� �������

������� ��������

������� ������ �������� �������� ��� ���������� ������ ���������� ������ ����

Fig. 7: Distribution of 51 processes among the clusters. The
first graph indicates the initial distribution and the others the
final distribution according to the ↵ values.

5.2 Impact of the Checkpoint Activation
As mentioned earlier, we evaluated the overhead caused

by BSPonP2P calculus, and the migrations occurred during
an execution without any machine leaving the CON. In this
experiment we analyze the recovery after an unexpected
exit of a machine from the CON, since a user can leave
the P2P network anytime. When there is no checkpoint the
application must restart the execution from beginning, i. e.,
scenario i, although with BSPonP2P whenever a migration
occurs a checkpoint is saved and the application can restart
from this point. In this context we evaluate scenario iii with
89 processes running, 2000 supersteps and ↵ equal to 16,
simulating an exit in different supersteps as can be seen in
Figure 8.

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 | 379

���

����

����

�����

�����

�����

���

���

����

����

�����

�����

� ����� ����� ����� ����� ����� ����� ����� �����

�

��

���

���

���

����

��������������

�
�
�
�
��
��
�
��
��
�
��
�
��
�
��

��������������� ������������������

Fig. 8: Performance with and without checkpointing accord-
ing to the supersteps with failure

Observing the results we can see that an exit in superstep
9 for instance did not cause any gain because there was
no migration and consequently no checkpoint. On the other
hand, when there is a bigger amount of superstep and a
closer checkpoint, like the one occurred in the last case with
an error in the superstep 1999 and the last checkpoint in the
superstep 1016, an economy of more than 57% in time could
be obtained.

6. Conclusion
This article presented BSPonP2P as an alternative to run

BSP applications in PDG infrastructures. To the best of our
knowledge, the proposed model is the first that joins the
aforementioned programming model and the collaborative
execution environment. Process rescheduling and check-
pointing management is the BSPonP2P’s scientific contri-
bution. Thanks to both strategies, we demonstrated that the
word “efficiency” referred in the problem statement means
here performance and fault tolerance.

Besides presenting situations in which BSPonP2P out-
performs the simple execution of a BSP application, most
of the results using Grid5000 clusters showed an average
overhead of 1.09% when using process rescheduling and
checkpointing. We classify this rate as positive to BSPonP2P,
because of an application must not be restarted from the
scratch when any fault occurs (either when a node crashes or
when an user sudden leaves the collaborative infrastructure).

Finally, we would like to emphasize that BSPonP2P is
not restricted to BSP applications, but it can be used to
manage any round-based computations in collaborative envi-
ronments. Future research should evaluate BSPonP2P with
process replication in order to launch copies of a process
at specific superstep to run concurrently, so helping at both
performance and fault tolerance areas.

Acknowledgment
This paper was partially founded by Santander and the

following Brazilian agencies: CNPq, CAPES, FAPERGS.

References
[1] E. Anceaume, M. Gradinariu, A. Datta, G. Simon, and A. Virgillito.

A semantic overlay for self- peer-to-peer publish/subscribe. In
Distributed Computing Systems, 2006. ICDCS 2006. 26th IEEE Int.
Conf. on, pages 22–22, 2006.

[2] M. Balasubramaniam, N. Sukhija, F. Ciorba, I. Banicescu, and
S. Srivastava. Towards the scalability of dynamic loop scheduling
techniques via discrete event simulation. In Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDPSW), 2012 IEEE
26th Int., pages 1343–1351, 2012.

[3] R. Camargo, F. Castor, and F. Kon. Reliable management of
checkpointing and application data in opportunistic grids. Journal
of the Brazilian Comp Society, 16(3):177–190, 2010.

[4] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica.
Load balancing in dynamic structured p2p systems. In INFOCOM
2004. Twenty-third AnnualJoint Conf. of the IEEE Comp and Com-
munications Societies, volume 4, pages 2253–2262 vol.4, March 2004.

[5] F. P. Hargreaves, D. Merkle, and P. Schneider-Kamp. Group com-
munication patterns for high performance computing in scala. In
Proceedings of the 3rd ACM SIGPLAN Workshop on Functional High-
performance Computing, FHPC ’14, pages 75–85, New York, NY,
USA, 2014. ACM.

[6] B. Hendrickson. Computational science: Emerging opportunities and
challenges. Journal of Physics: Conf. Series, 180(1):012013, 2009.

[7] K. Khan, K. Qureshi, and M. Abd-El-Barr. An efficient grid
scheduling strategy for data parallel applications. The Journal of
Supercomputing, 68(3):1487–1502, 2014.

[8] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis. Mizan: a system for dynamic load balancing in large-scale
graph processing. In Proceedings of the 8th ACM European Conf. on
Comp Systems, EuroSys ’13, pages 169–182, New York, NY, USA,
2013. ACM.

[9] E. Kijsipongse and S. U-ruekolan. Scaling hpc clusters with volunteer
computing for data intensive applications. In Comp Science and
Software Engineering (JCSSE), 2013 10th Int. Joint Conf. on, pages
138–142, May 2013.

[10] A. F. Leite, H. C. Mendes, L. Weigang, A. C. M. A. Melo, and
A. Boukerche. An architecture for p2p bag-of-tasks execution with
multiple task allocation policies in desktop grids. Cluster Computing,
15(4):351–361, 2012.

[11] L. Lin, K. Koyanagi, T. Tsuchiya, T. Miyosawa, and H. Hirose. Im-
proving routing load balance on chord. In Advanced Communication
Technology (ICACT), 2014 16th Int. Conf. on, pages 733–738, Feb
2014.

[12] R. d. R. Righi, L. Graebin, and C. A. da Costa. On the replacement
of objects from round-based applications over heterogeneous environ-
ments. Software: Practice and Experience, pages n/a–n/a, 2014.

[13] C. Schepke and N. Maillard. Performance improvement of the parallel
lattice boltzmann method through blocked data distributions. In Comp
Architecture and High Performance Computing, 2007. SBAC-PAD
2007. 19th Int. Symposium on, pages 71–78, Oct 2007.

[14] J. Sentís, F. Solsona, D. Castellà, and J. Rius. Discop2p: an efficient
p2p computing overlay. The Journal of Supercomputing, 68(2):557–
573, 2014.

[15] K. Shudo, Y. Tanaka, and S. Sekiguchi. P3: P2p-based middleware
enabling transfer and aggregation of computational resources. In
Cluster Computing and the Grid, 2005. CCGrid 2005. IEEE Int.
Symposium on, volume 1, pages 259–266 Vol. 1, 2005.

[16] B. H. Son, S. woo Lee, and H.-Y. Youn. Prediction-based dynamic
load balancing using agent migration for multi-agent system. In High
Performance Computing and Communications (HPCC), 2010 12th
IEEE Int. Conf. on, pages 485–490, 2010.

[17] L. G. Valiant. A bridging model for parallel computation. Commun.
ACM, 33(8):103–111, Aug. 1990.

[18] D. Wu, Y. Tian, and K.-W. Ng. On the effectiveness of migration-
based load balancing strategies in dht systems. In Comp Communica-
tions and Networks, 2006. ICCCN 2006. Proceedings.15th Int. Conf.
on, pages 405–410, 2006.

[19] H. Zhao, X. Liu, and X. Li. A taxonomy of peer-to-peer desktop grid
paradigms. Cluster Computing, 14(2):129–144, 2011.

380 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'15 |

View publication statsView publication stats

