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Internet of Things (IoT)
• Fusion of virtual environments and contained objects with their real-world 

counterparts (Uckelmann et al., 2011)
• The challenge to handle vast amounts of data - data analytics
• Total increase of data driven projects by 125% during the period 2014-20151

Stream-processing or Oriented-to-events
• Huge increase in volume and availability (Tudoran et al., 2014)
• Overwhelming collection rates
• Apache Storm, Spark, Flink or S4
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Lambda Architecture (Marz, 2013)
• Handle vast amounts of data

• 4th Generation of Data Processing Engines (Ewen et al., 2013)

• Robustness, fault tolerance, low latency of reading and updating, scalability, 
generalization, extensibility, ad hoc queries, and minimal maintenance

The improvement of the decision-making engine of the Dispatcher 
module
• SMART (Anjos et al., 2015)

• Large variety of data sources

• Several policies to the managing data and tasks

Study and application of different strategies on the SMART-Sent 
environment
• SMART is an Ubilytics environment

Introduction
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Heterogeneous Infrastructures
• JetStream (Tudoran et al., 2014) is a set of strategies for efficient transfers of 

events between cloud data centers
• SMART (Anjos et al., 2015) is a platform that offers an efficient architecture 

for Big Data analysis applications for small and medium-sized organizations
• (Pham et al. , 2016) is a generic, extensible, scalable, fine-grained, and re-

configurable multi-cloud framework

Hybrid Infrastructures
• BIGhybrid (Anjos et al., 2016) summarizes the main features of a Hybrid MR
• HybridMR (Tang et al., 2015) is a model for the execution of MapReduce on 

hybrid computation environments (Cloud and DG)
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Hybrid Engines
• Apache Spark (Zaharia et al., 2012) is a framework that uses resilient 

distributed datasets (RDDs) and enables efficient data reuse
• Apache Flink (Alexandrov et al., 2014) enables massively parallel in-situ data 

analytics, using a programming model based on second order functions 
• Summingbird (Boykin et al., 2014) integrates batch and online analyses with 

the aid of a hybrid processing model

Related Work
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Open Opportunities
• Stream processing only has been performed in heterogeneous environments
• Generally the engines were designed to run in clusters and cloud computing 

environments – using Round Robin policies to deploy the tasks. This is not 
suitable for heterogeneous and dynamic environments (i.e., R-Storm (PENG et 
al., 2015), P-Scheduler (ESKANDARI; HUANG; EYERS, 2016) and (LIAO et al., 
2015))
• Optimize the utilization of the infrastructure – idle resources
• Take advantage of the BIGHybrid Simulation 

Related Work
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SMART Model

Global Collector - layer handles the management and 
coordination of the sensing modules

Global Dispatcher - the data is decoupled from the lower 
layers in the message queue mechanism. It is put in a FIFO 
queue so that it can be distributed to severs in accordance to 
the availability of their resources
• The optimization layer analyses the volume of input data 

and employs the Decision Engine to make decisions about 
scheduling tasks and data through distinct environments. 

• A simulation process implements an execution time 
prediction that will be used by the Decision Engine to 
improve the accuracy of the scheduling mechanism. 

Core Engine - must support hybrid systems, i.e., provision of 
streaming and batch computations at the same time

Global Aggregator is a module that orchestrates the results of 
the aggregation and maintains the safety data mechanism for 
the end-users.
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Applied on the Global Dispatcher of the SMART platform

Regarding data distribution in real time applications, via solutions presented by 
Righi et al. (2015)

Global Dispatcher will carry out the tasks of load balancing, and latency 
control (data stream processing and network bandwidth), provision of 
scalability, while reducing the costs for improvement of availability of 
resources

The role of the Decision Engine is to select the computing resources needed 
for carrying out a task

The task definition will be achieved by simulation, which will use BIGhybrid, 
and at the same time, to evaluate the environment for the re-scheduling 
processes (data placement and data movement)

Dispatcher Strategies
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Asynchronously create batch views in the background

Create the stream views, in which the latest logs (nodes and tasks) will 
be collected for the control

Combination of views will achieve a performance gain due to the fact 
that most of the information required will already have been generated 
when it is needed 

The clustering data method and processing in small batches will be used 
to obtain low latency for the stream-based processing (Das et al. (2014))

Through the batch-sizing of stream processing, it will reduce the latency, 
make it easier for the processing flow (i.e., by processing simulations) 
and facilitate the scheduling and rescheduling of tasks and data.

Dispatcher Strategies
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The differential approach is highlighted by 
the adoption of task simulation, availability 
of resources, network availability, costs, 
aggregation time and so on) with the 
strategies (i.e. batch and stream) to decide 
where to allocate the task to (node or 
Cloud).

Dispatcher Strategies

Scenario i: represents the simple 
execution, disabling all other 
servicesScenario ii: adds the scheduling 
calculusScenario iii: this scenario enables 
all the services

Situation f is the best execution, because 
beside have all services running the time is 
smaller then the situation a. Although 
situation e has a larger time when 
compared to situation a, it was computed 
using the best choice found on the 
decisions
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Best Result or a Good Result 
• Include the time to movement data and the task migrations 
• Time to data aggregate when the data is shared between 

a) the computing resources 

b) time estimated to execute a task

c) data placement

d) computing resource rating. In this way the overall execution time can be reduced and 
allow a simple fail control (volatile)

Dispatcher Strategies
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The reasons for applying this feature to the architecture are set out below: 
• Migration: Since there is a dynamic, the nodes might be in or out of the network (i.e., 

churn). This means that a certain task may be at an overload or a slow node, and there might 
be a machine that runs in less time (when the movements are counted). In this case, it is 
worth migrating the task

• Aggregation: Distributing the tasks belongs to the network and forms a part of a set; thus 
it will be necessary to group the results. The distribution will be able to obtain time and 
make use of the idle resources

• Replication: Replicating the task belongs to the network and means that it will be 
necessary to ensure the correct execution and reduce the time when a fault occurs. A fault 
generally occurs because of the volatile environment (Desktop Grid)

• Computing Resource Rating: The rate will evaluate the resource data, network data and 
past execution data

• Time Estimation: Knowing the time before executing a task will make it easier to ensure a 
correct scheduling

Dispatcher Strategies
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The combination of batch and stream strategies will be able to reduce the 
Dispatcher time. The work of De Francisci Morales and Bifet (2015) provides some 
evidence that there is a significant reduction with the result of this merge. The 
batch-based method can reduce the decision making time and the management 
time and, in addition, can be used to the stream processing monitoring. However, all 
this must be in accordance with the Lambda Architecture paradigm.

 BIGhybrid simulator could be employed to estimate an execution time. The 
BIGhybrid will use the computational resources found in the environment, such as 
hardware performance, network performance, and tasks costs. A weight rating of 
computing will be defined through the simulation to dene some thresholds. The 
restriction will aid to control overhead levels of run time

Estimating an approximate execution time, will make the scheduling and re-
scheduling easier, because this makes it possible to know when a task will probably 
end at a particular computing resource before it starts

Dispatcher Strategies
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Stream processing applied to volatile and 
heterogeneous environments is currently a significant 
subject for research

The proposed solution will be applied at a complex 
infrastructure (i.e., geographical distributed) to study 
its issues and validate the model

The migration, scheduling (MapReduce simulation and 
heuristics), and replication features will treat the 
problems of its volatility, heterogeneity and dynamic

Through the strategies to combine the desirable 
features, the proposed model will provide a Good or 
The Best Result on the scheduling settlements

Conclusion
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Study the impact of decouple environment in a stream-processing 
infrastructure

Define dynamically the batched-size of the streams

Control the flow of the environment

Applied the Lambda Architecture on the SMART

Evaluate the model

Future Work
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