
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier

Boosting Big Data Streaming
Applications in Clouds with BurstFlow
PAULO R. R. DE SOUZA JUNIOR1, KASSIANO J. MATTEUSSI1,7, ALEXANDRE DA SILVA
VEITH2, BRENO F. ZANCHETTA1, VALDERI R. Q. LEITHARDT4,5,6,7, ÁLVARO LOZANO M.3,
EDISON P. DE FREITAS1, JULIO C. S. DOS ANJOS1 and CLAUDIO F. R. GEYER1.
1Federal University of Rio Grande do Sul, Institute of Informatics, UFRGS/PPGC, Porto Alegre, RS, Brazil, 91501-970,
(e-mail:{prrsjunior, kjmatteussi, bfzanchetta, edison.pignaton, jcsanjos, geyer}@inf.ufrgs.br)
2University of Toronto, Department of Computer Science, Toronto, ON, M5S 2E4, Canada, (e-mail:alexandre.veith@utoronto.ca)
3University of Salamanca, Faculty of Science, Expert Systems and Applications Lab, Plaza de los Caídos s/n, Salamanca, Spain, 37008, (e-mail: loza@usal.es)
4COPELABS, Universidade Lusófona de Humanidades e Tecnologias, 1749-024, Portugal
5Departamento de Informática, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
6Instituto Politécnico de Portalegre, VALORIZA Research Center, Portalegre, Portugal, 7300-555, (e-mail:valderi@ipportalegre.pt)
7Member, IEEE

Corresponding author: Paulo R. R. de Souza Junior (e-mail: paulosouzjunior@gmail.com).

This work was supported by the "SmartSent" (#17/2551-0001 195-3), CAPES (Finance Code 001), PNPD program,
PROPESQ-UFRGS-Brasil and FAPERGS Project "GREEN-CLOUD - Computação em Cloud com Computação Sustentável" under Grant
#16/2551-0000 488-9, in part by "Project Smart following systems, Edge Computing and IoT Consortium, CONSORCIO
TC_TCUE18-20_004, CONVOCATORIA CONSORCIOTC. PLAN TCUE 2018–2020. Project managed by Fundación General de la
Universidad de Salamanca and co-financed with Junta de Castilla y León and FEDER funds", in part by the postdoctoral fellowship from
the University of Salamanca and Banco Santander, and in part by "Fundação para a Ciência e a Tecnologia" under Projects
UIDB/04111/2020 and FORESTER PCIF/SSI/0102/2017.

ABSTRACT
The rapid growth of stream applications in financial markets, health care, education, social media, and
sensor networks represents a remarkable milestone for data processing and analytic in recent years,
leading to new challenges to handle Big Data in real-time. Traditionally, a single cloud infrastructure
often holds the deployment of Stream Processing applications because it has extensive and adaptative
virtual computing resources. Hence, data sources send data from distant and different locations of the
cloud infrastructure, increasing the application latency. The cloud infrastructure may be geographically
distributed and it requires to run a set of frameworks to handle communication. These frameworks often
comprise a Message Queue System and a Stream Processing Framework. The frameworks explore Multi-
Cloud deploying each service in a different cloud and communication via high latency network links.
This creates challenges to meet real-time application requirements because the data streams have different
and unpredictable latencies forcing cloud providers’ communication systems to adjust to the environment
changes continually. Previous works explore static micro-batch demonstrating its potential to overcome
communication issues. This paper introduces BurstFlow, a tool for enhancing communication across data
sources located at the edges of the Internet and Big Data Stream Processing applications located in
cloud infrastructures. BurstFlow introduces a strategy for adjusting the micro-batch sizes dynamically
according to the time required for communication and computation. BurstFlow also presents an adaptive
data partition policy for distributing incoming streams across available machines by considering memory
and CPU capacities. The experiments use a real-world multi-cloud deployment showing that BurstFlow
can reduce the execution time up to 77% when compared to the state-of-the-art solutions, improving CPU
efficiency by up to 49%.

INDEX TERMS Big Data, Stream Processing Applications, Multi Cloud, Micro-Batches, Data Partition.

I. INTRODUCTION

The advent of the Internet of Things (IoT) has led to
new challenges in the Big Data era due to the limitations

of storage, computation, and communication of existing
devices since IoT devices generate massive amounts of
data that require processing to support the decision-making

VOLUME 4, 2016 1



Paulo R. R. de Souza Junior et al.: Boosting Big Data Streaming Applications in Clouds with BurstFlow

process. The data processing happens in two ways: Batch
Processing (BP), which explicitly manipulates large datasets
of historical data with high latency, and Stream Processing
(SP), which performs (near) real-time analysis over contin-
uous data flows using in-memory processing.

In a traditional approach, IoT devices located at the
edge of the Internet produce data at overwhelming rates.
This data traverses high distance links to be consumed on
faraway cloud providers by applications of the financial
market, call services, automation in Industry 4.0, etc [1]–
[4]. In SP time-sensitive applications, this approach can
produce high overheads making it hard to achieve (near)
real-time analytics. It happens because SP applications often
handle data (i.e., event) one at a time, leading to adding
the network latency to each of the events with regular
protocols. The generated latency is the major problem for
critical decision-making applications, for instance, in the
intrusion detection system where a hacker intrusion can
mean financial damage [5]. Furthermore, SP applications
can have unpredictable data bursts leading to bandwidth
contentions [6], [7].

SP frameworks such as Apache Flink [8] and Apache
Spark [9] cannot orchestrate communication across multiple
data centers leading to high application latency and low
throughput. However, some solutions overcome this limi-
tation by supporting applications in Multi-Cloud (MC) in-
frastructure and exploring the locality of micro data centers.
These micro data centers also allow creating batches of data
to add the network latency in data transfers to a set of events
rather than to each event [10]. Micro-batch is an attractive
method in SP because it permits to achieve better throughput
and application latency [11]. Previous works attempt to
employ micro-batch strategies using an absolute number
of events [12], [13] or time [14] for creating the batches.
These solutions neglect how to partition the micro-batches
across the heterogeneous computing resources where the SP
framework is deployed [15] – leading to higher execution
time, demonstrating the lack of solutions that couple the
micro-batch policy and the SP framework setup.

This work describes BurstFlow, a tool for dynamically
handling data bursts in a geographical infrastructure and
distributing the input data across multiple SP operation
partitions. BurstFlow improves the communication between
data centers at the network edge and cloud computing
by transmitting data into micro-batches. The micro-batch
size is defined by considering the message life time in
the whole system. Furthermore, BurstFlow introduces an
adaptive method to distribute incoming streams in the SP
framework. Real-world experiments show an improvement
of over 9% in the execution time, over 49% better CPU and
memory utilization compared to methods applied to data
partitioning in Apache Flink and state of the art.

The contributions of this work are:

• BurstFlow, a tool for orchestrating Big Data SP appli-
cations in MC infrastructure using monitored informa-

tion from the application data flow and the resources
(Section IV-B);

• BurstFlow’s Execution Time-Aware Micro-Batch Strat-
egy (ETAMBS) extends the standard negotiation
method of buffer sizes in the Big Data engine com-
munication, embedding a dynamic adjustment to de-
termine the micro-batch sizes dynamically to overcome
the overhead of the network latency (Section IV-C);

• BurstFlow’s Resource-Aware Partition Policy (RAPP)
distributes the incoming micro-batches across the run-
ning operator replicas assigning micro-batches by con-
sidering memory and CPU (Section IV-D); and

• A prototype and a performance evaluation comparing
BurstFlow against the state-of-the-art solutions (Sec-
tion V).

This work is structured as follows: Section II presents a
review of the related work, followed by Section III that de-
fines the evaluated problem in this work; Section IV details
the BurstFlow and strategies to create micro-batches and the
adopted partition policy; Section V presents the experiment
setup, the prototype, the adopted methodology and then
discusses the achieved results and threats to validity. Finally,
Section VI concludes the paper by providing directions for
future work.

II. STATE-OF-THE-ART IN ADAPTIVE STREAM
PROCESSING
Cloud computing is a robust environment to perform large-
scale and complex computations as it provides security,
efficiency, flexibility, pay-as-you-go billing structure, and a
scalable data storage [16], [17]. As a result, many organiza-
tions have explored it to support data-intensive applications
and services in the most diverse domains.

One of the explored contexts is (near) real-time SP
applications that require low-latency processing over unpre-
dictable and continuous flows of data [18]. Data arrives from
data sources spread in geographically distributed areas. In
this process, each generated data requires delivery guaran-
tees to prevent data loss. To achieve these requirements,
many SP systems are created on top of a stack of compo-
nents. For instance, the data source produces data to a queue
in a Message Queue System (MQS), and the SP framework
consumes from the queue. As a result, each component of
the system is often located in a different data center.

The baseline approach implemented in cloud-based
frameworks such as Apache Spark, Apache Flink, and
Apache Heron [19] consider a single cloud data center to
run the MQS and the SP framework. Furthermore, the SP
applications consume one message at-at-time from the MQS
because they assume the data source is co-located in the
data center, neglecting the existing network latency. Another
issue is that cloud-based frameworks count on homogeneous
workloads when distributing data in the SP framework and
neglect performance metrics such as data ingestion, memory,
or network utilization. Consequently, applications suffer
from resource-related interference problems (e.g., memory

2 VOLUME 4, 2016



Paulo R. R.de Souza Junior et al.: Boosting Big Data Streaming Applications in Clouds with BurstFlow

and network contention) due to the lack of control and
management, incurring low throughput and failures. In the
following, there is an analysis of works representing state
of the art in adaptive SP for heterogeneous and distributed
systems.

In JetStream [12], the approach uses available commu-
nication channels allowing multiple stream routes among
cloud sites for supporting the largest batch size transfer
possible. To achieve this goal an algorithm computes both
data transfers and the batch sizes to find one convergence
point between the transference of batches seeking the lowest
execution time. The data transmission strategy use multicast
algorithm (i.e. transmits a single message that is replicated
to all nodes in a group). The orchestrator uses a oracle
that decide when to send a message to the transfer module.
The evaluations consider the aggregation of up 1000 events
and measure the latency response of data transfer between
different cloud data centers. Therefore, JetStream selects the
best route – lowest latency – to transfer batches. However,
it takes into account only the communication and batch
size and lacks on data distribution to optimize processing
throughput.

Das et al. [14] offer an adaptive batch sizing algorithm
for SP systems based on a fixed-point iteration strategy. It is
a well-known numerical optimization technique that allows
the system to adapt to the window size when data ingestion
varies too much. The approach defines a minimum batch
size to achieve execution stability. Thus, it is possible to
minimize end-to-end latency while keeping the system sta-
ble based on batch statistics. This strategy allows better use
of system resources because it avoids processing delays and
low performance, which occurs due to load spikes that lead
the processing to built-up queue conditions. The deployment
defines a job controller to manage the batch size and a job
processor that provides feedback about job execution status.
This approach is implemented in the Apache Spark and does
not offer neither indirect communication or load balance.

Zhang et al. [20] study batch and block interval as
the most important factors affecting the performance of
Spark Streaming, such as the application latency problem.
The work discusses how long waiting time affects the
correctness of the latest completed batch interval statistics,
letting it out of date because they usually cannot reflect the
workload conditions. A heuristic algorithm is built using the
waiting time and an isotonic regression to dynamically adapt
the batch and block interval to workloads and operating
conditions. The algorithm quickly converges to the desired
batch and block interval and continuously adjust both based
on previous data rates, processing time, and block interval.
Unfortunately, this work is restricted for Reduce and Join
workloads and presents a small testbed with few processing
nodes and low workload throughput (≈4MB/s). This ap-
proach does not address the real-time processing conditions.

Anjos et al. [21] identify the relation between stream
rate of income and time processing variation of Apache
Flink. The experiments simulate an orchestrator that pro-

vides the data dispatches to virtual machines in accordance
with its computational capacity. The machines are grouped
by computational capacity similarity. These experiments
confirm that the data generation has low communication
impacts in comparison with high network latency. The study
demonstrates the best performance is achieved with greater
data blocks, but in comparison with BurstFlow it does not
provide a dynamic solution to the stream processing adjusts.

Fernandez et al. [22] proposed the Liquid a data in-
tegration system to provide low latency for data access
to batch applications. The implementation provides the
incremental processing and keeps producers and consumers
decoupled with higher availability. The message layer use
the RAM cache of the operational system to achieve high-
throughput writes. The orchestrator is the Apache Zookeeper
[23] that uses Apache Kafka to message management and
the Apache Samza [24] to manage stream processing. The
system provides a message approach of at-least-once de-
livery semantics for idempotent updates. The low latency
increments the processing using annotations with metadata.
Nowadays the implementation uses Microsoft Azure.

Gulisano et al. [25] investigate the resource contention
problem associated with the auto-parallelization of running
queries in distributed SP frameworks. The authors present
the execution of query tasks on worker nodes that may
lead to shared resource contention. The proposed solution
contains an adaptive feedback controller based on Model
Predictive Control (MPC). It ensures the elastic allocation,
as observed by the improvement of 15% in total servers re-
source utilization with an average reduction of 14% in tuple
latencies. The proposed solution also reduces the Quality
of Service (QoS) violation incidents by 123% (maximum
207%) compared to the round-robin heuristic, which uses
all available resources in the cluster farm.

Another aspect of key importance to improve perfor-
mance in SP applications is memory management. Zhao et
al. [26] propose a resource-aware cache management solu-
tion for in-memory processing. The design of this solution
aims to enhance the cache utilization of executors by using a
heuristic method based on sub-modular optimization theory
and data dependency information to evict and prefetch data
blocks from memory appropriately. It improves memory
access; however, it does not assume data distribution, which
in a distributed environment will not oversee latency con-
straints in applications.

Xiu et al. [27] aim to improve memory allocation for
storage and execution areas. The main idea is to optimize
and reduce cache loss and memory overflow to improve task
execution efficiency. Similarly, Tang et al. [28] introduce a
Dynamic Spark Memory-Aware Task Scheduler (DMATS)
algorithm to treat memory and network I/O through feed-
back information to utilize these resources optimally. How-
ever, both solutions do not improve data consumption and
do not acknowledge latency and data partition inside the SP.

Table 1 summarizes the main techniques for adaptive
SP found in the Related Work. SP has been applied in

VOLUME 4, 2016 3



Paulo R. R. de Souza Junior et al.: Boosting Big Data Streaming Applications in Clouds with BurstFlow

TABLE 1. Techniques for Adaptative Stream Processing

Infrastructures Strategies Proc

A
ut

ho
r

G
eo

-D
is

tr
ib

ut
ed

C
lo

ud
In

fr
as

tr
uc

tu
re

C
lu

st
er

M
ul

ti-
C

lo
ud

H
yb

ri
d

In
fr

as
tr

uc
tu

re

W
in

do
w

Si
ze

Ti
m

e
In

te
rv

al

T
hr

ou
gh

pu
t

E
va

lu
at

io
n

A
pp

lic
at

io
n

E
va

lu
at

io
n

Q
ue

ry
E

va
lu

at
io

n

C
om

pu
ta

tio
n

C
ap

ac
ity

M
em

or
y

M
an

ag
em

en
t

C
ac

he
M

an
ag

em
en

t

It
er

at
io

n
St

ra
te

gy

In
cr

em
en

ta
l

pr
oc

es
si

ng

D
yn

am
ic

A
pp

ro
ac

h

O
n

D
em

an
d

A
pp

ro
ac

h

D
at

a
M

ov
em

en
t

A
da

pt
iv

e
A

pp
ro

ac
h

G
ro

up
St

ra
te

gy

B
at

ch
M

on
ito

ri
ng

B
at

ch

St
re

am
in

g

A
pp

ro
ac

he
s

JetStream [12] x x x x x x
Das et al. [14] x x x x x x
Fernandez et al. [22] x x x x
Gulisano et al. [25] x x x x x x
Zhang et al. [20] x x x x x
Anjos et al. [21] x x x x x x x
Zhao et al. [26] x x x x x x
Xiu et al. [27] x x x
Tang et al. [28] x x x x x
BurstFlow x x x x x x x x x x x

cloud environments to perform processing independently on
multiple sites. Moreover, MC have important characteristics
to consider, as heterogeneity and resource variation, such
as network bandwidth, memory, and CPU pools. For in-
stance, network latency can significantly vary depending
on the geographic location and the processing flow of the
application [12]. Still, the number of CPUs or memory
can considerably differ, requiring well-defined scheduling
techniques to support workload variations.

BurstFlow diverges in a key point from strategies pre-
sented in Table 1: the data aggregation due to flow partition
control based on the memory and the application throughput
management. Unlike the works found in the literature,
BurstFlow uses an adaptive and dynamic model to estimate
the number of events per message based on feedback loops
that monitor the batch size in the memory of workers to
further forward data. This approach leads to overcoming
contention scenarios while maintaining network stability.

Typically, computational resources are shared simultane-
ously among multiple users, applications, and mixed work-
loads. BurstFlow addresses an actual concern in Big Data
processing in MC, and it manages resources appropriately.
Regardless, SP applications tend to process in memory to
increase events throughput. Unfortunately, the amount of
memory is limited, and as it is used for both in-memory
processing and storage, it can be a further bottleneck in
the system. BurstFlow explores more efficiently the memory
avoiding swaps from memory to disk and vice-versa.

This section investigated current concerns about maintain-
ing system stability and high event throughput. Nevertheless,
the analysed state-of-the-art solutions reveals a research
gap between adaptive solutions to improve network issues
and memory management for SP in heterogeneous and
distributed systems. Thus, BurstFlow explores this gap to
propose a flow partition approach.

III. PROBLEM STATEMENT
Sensors located at the edge of the Internet produce data
at burst rates to be consumed by SP applications placed
on cloud servers. These servers are often faraway from
the data sources requiring to traverse the Internet via high
latency links subject to package loss [29]. To manage
communication, SP applications need to use a set of tools
to provide a stable data transmission infrastructure such as
MQSs [30] and MC. For instance, a MQS is used to manage
the transfer and guarantee message delivery from different
sensors to a micro data center or the cloud service provider.
MQS provide delivery semantics such as at-most-once, at-
least-once, or exactly-once.

SP application retrieves messages from the MQS utilizing
consumer clients. Consumer clients often connect to the
MQS via TCP. Hence, the MQS offers multiple settings
to the users in order to achieve better performance. This
happens because the user can work either on Local Area
Network (LAN), Wide Area Network (WAN) or both. The
consumer buffer size is essential because permits to config-
ure how much data the sockets use when reading/writing
data – the buffer size depends on latency and the avail-
able bandwidth. The consumer often uses cache buffers to
maintain the storage messages in memory, speeding up the
process of reading done by the SP framework.

Furthermore, SP frameworks often handle messages one-
at-a-time, which can turn infeasible to work with MC as the
network link latency is appended to each data transfer. An
attractive solution is to use micro-batches where messages
are accumulated in batches before being transferred, adding
the network latency overhead a single time. Nonetheless,
most SP applications are time-sensitive, thus the processing
time for each message matters for the system. For instance,
an incorrect configuration to the batch size of the micro-
batch can drive to high processing times and comprising
real-time constraints.

4 VOLUME 4, 2016



Paulo R. R.de Souza Junior et al.: Boosting Big Data Streaming Applications in Clouds with BurstFlow

Figure 1 shows a bar plot to represent the impact of each
micro-batch size where the micro-batch size is shown in
the x-axis and the execution time in seconds in the y-axis.
The used infrastructure and application configuration are
provided in Section V. The results present a high execution
time for the one-at-a-time data transfer (micro-batch size
equals one). This happens because message executions are
subject to network latency and processing time. In contrast,
a large micro-batch size demands a long wait time to collect
the target number of messages due to the production rate of
messages in the sensors and higher execution time to process
the whole batch in the SP framework. According to the bar,
the micro-batch size with 100 is the best execution time.
Since the network latency and the processing requirements
can vary, then a dynamic policy to establish the batch size
is required.

FIGURE 1. Analysis of different micro-batch sizes. The red color shows the
better micro-batch size.

The policy to determine the batch sizes must consider the
information of the network as well as application metrics
and configurations of the SP framework. A good policy for
the batch sizes results in better throughput and mitigate
latency in the SP application. This is a challenge due
to a lack of solutions that orchestrate SP applications in
MC. This work addresses both problems by introducing
an orchestration tool to determine a batch size policy that
considers the stack of tools required to run SP applications
in the MC environment.

This work also addresses the problem of high processing
times due to the unbalance of data consumption by multiple
consumer clients of SP applications. An SP application is
often structured as a directed graph whose vertices are op-
erators that perform transformations over the incoming data
and edges representing the data streams between operators.
When the SP application is submitted to the framework, the
user can inform the parallelism degree to the application
operators. Each operator replica connected to the MQS
creates a consumer client, which will consume messages
one-at-a-time in a round-robin fashion (i.e., Baseline) from

a given queue. The Baseline was conceived for clusters
of homogeneous computing resources in LANs. However,
this method applied to heterogeneous infrastructure leads to
performance depreciation as computing and communication
have different speeds and can change along time.

IV. BURSTFLOW: A MECHANISM TO BOOST THE
THROUGHPUT OF SP APPLICATIONS IN MULTI CLOUD
This section details BurstFlow and its strategies proposed for
placing creating micro-batches onto MC infrastructure while
improving the application throughput and the aggregate
message latency.

A. SYSTEM OVERVIEW
This work considers a scenario where data sources (e.g.,
sensors) located at the edge of the Internet send their
produced messages in micro-batches to an MQS placed
on a micro data center closer to the data sources. An SP
framework located on a different cloud service provider
than the MQS consumes the micro-batches from the MQS.
BurstFlow orchestrates the communication between each
data source and the SP framework by deploying a set of
services (Section IV-B) to determine the size of micro-
batches and distribute the workload across the operator
replicas dynamically. Each data source runs a BurstFlow
service called Data Orchestrator, which has a holistic view
of the execution time of a micro-batch – i.e., the execution
time is the difference between the timestamp when the
last message of the micro-batch is processed by the SP
framework and the timestamp when the first message of
the micro-batch was created by the data source.

Furthermore, BurstFlow computes the size of the micro-
batches using the ETAMBS (Section IV-C) to achieve better
throughput and per-message latency, either considering the
communication and computation times. BurstFlow also runs
the RAPP (Section IV-D) along with the SP framework,
which receives the micro-batches and distributes them across
the operator replicas by taking into account the resource
utilization of each machine of the SP cluster. When the op-
erator replica receives the micro-batch, it parses the micro-
batches and then ingests the messages into the application
dataflow.

B. BURSTFLOW ARCHITECTURE
BurstFlow was designed to be a multi-resource dispatcher
for geographically distributed and heterogeneous MC envi-
ronments. Its main goal is to observe the micro-batch lifes-
pan and make scheduling decisions to reduce its execution
time. The scheduling decisions use algorithms to establish
the size of the micro-batches and balance the workload
across operator replicas that consume data from the MQS.

The design also considers a stack of frameworks and
services for processing a micro-batch – i.e., data sources,
MQS, and SP framework. Hence, BurstFlow has compo-
nents strategically deployed in infrastructure in order to
capture individual latencies from the time where a data

VOLUME 4, 2016 5



Paulo R. R. de Souza Junior et al.: Boosting Big Data Streaming Applications in Clouds with BurstFlow

source generates a message up to the time in which the SP
framework completely processes it. This structure permits
the BurstFlow to adjust the micro-batches in each data
source to reduce their overall processing time.

.95

FIGURE 2. BurstFlow architecture.

Figure 2 introduces BurstFlow architecture. The messages
generated by a data source arrive at the Data Orchestrator
co-located with the data source. The Data Orchestrator
runs the ETAMBS (Section IV-C), which determines the
number of messages to be accumulated in the micro-batch.
ETAMBS interacts with the Resource Watch to be able to
compute the micro-batch size by analyzing how previous
micro-batch sizes behaved. Hence, messages are retained
in a micro-batch before achieving its target size. Then, the
micro-batch is sent to a queue in the MQS.

The MQS consumers in the SP Framework drain the
messages from the MQS queue. When the message arrives
at the SP Framework, the Master decides how to distribute
the messages across the operator replicas (i.e, Slaves) using
the RAPP (Section IV-D) from the Partition Balancer.
The strategy gets available and used memory and CPU of
each operator replica’s resource to decide where to send
a micro-batch. After the decision, the Manager sends the
micro-batch message and then SP application consumes the
individual messages of the micro-batch.

C. Execution Time-Aware Micro-Batch Strategy
(ETAMBS)
BurstFlow adjusts dynamically the size of a micro-batch
in the data source side taking into account the whole
flow of communication and computation. Each data source
accumulates messages in a micro-batch before sending it to
the MQS.

Aggregation Algorithm 1 presents how BurstFlow handles
each message’s arrival when forwarding a micro-batch to
the MQS. The algorithm maintains a global buffer where it
accumulates the messages for the micro-batch. This buffer
has properties such as ID and Timestamp, which allows the
system to keep track of its execution time. When including
the first message, the system attributes a unique ID and
sets the timestamp when the received message was created
(lines 2-4). In the next step, the algorithm appends the
message to the buffer (line 5). Then, the number of messages
in the buffer is compared to the GetMaxBufferSize function
(line 6). If the number of messages is higher or equal to the
output of the function then the micro-batch is sent to the
MQS and the buffer is reinitialized (lines 7-8).

The GetMaxBufferSize function starts returning an aggre-
gation of 2 messages for the micro-batch. This function
interacts with the Resource Watcher by checking the execu-
tion time required to process the micro-batch. The execution
time of a micro-batch is retrieved using a unique ID. The

Algorithm 1 Aggregation Algorithm
1: procedure SEND(msg)
2: if buffer .size = 0 then
3: buffer .setID()
4: buffer .setTimestamp(msg .GetTimestamp())

5: buffer .append(msg)
6: if buffer .size() >= GetMaxBufferSize() then
7: send_micro_batch(buffer)
8: buffer .clear()

execution time permits to create of a rate by dividing the
micro-batch size and the execution time. The rate is stored in
vector as a tuple (x, r) where x denotes the evaluated micro-
batch size, and r expresses the average message time. During
the convergence phase, each function call increments one to
the micro-batch size, and the rate is stored in the rate vector.
If the current rate is higher or equal to the previous micro-
batch size, then the algorithm picks the micro-batch size
from the previous position of the vector leading to conclude
the convergence phase. For example, if the current micro-
batch size is 6 with rate 3, and the previous micro-batch
size is 5 with rate 2 then the GetMaxBufferSize function
returns 5, and in the next call of the function, it will return
the same value.

ETAMBS implements a service, which controls the time
required to build a micro-batch. This happens because the
ingestion rate in the data sources can change. If the time to
achieve the micro-batch size is higher than its rate, then the
micro-batch is sent to the MQS and the convergence phase is
reinitialized. If the variance between the current and the last
saved rate is higher than 30% then the convergence phase
is also reinitialized. This trigger permits to the detection of
anomalies in the execution of the micro-batches, such as
higher or lower network latency or computing capacity for
the MQS and SP framework.

D. Resource-Aware Partition Policy (RAPP)
The RAPP distributes the incoming micro-batches across
the running operator replicas assigning micro-batches by
employing a ratio between memory and CPU of each ma-
chine where each operator replica is running. The Resource
Watcher provides the CPU and memory. RAPP creates an
affinity list identifying the most idle machine by paring the
ratio and the operator replica ID. In order to simplify the
micro-batch assignment, RAPP orders the affinity list by the
ratio in a decent manner. If there exist operator replicas with
the same ratio, then RAPP puts the operator replica with
the most powerful machine in a higher position. Thus, the
partition algorithm does not unpack the micro-batch when
it arrives. First, it picks the operator replica at the top of
the list to assign the micro-batch. At last, the micro-batch
arrives at the operator replica, where it is unpacked using a
parsing function, and the operator consumes each message.

RAPP computes the affinity list every five seconds to

6 VOLUME 4, 2016



Paulo R. R.de Souza Junior et al.: Boosting Big Data Streaming Applications in Clouds with BurstFlow

get the system changes and distribute the workload fairly
across the operator replicas. Updating the affinity list starts
by interacting with the Resource Watcher to get the total
and available memory, and the average CPU consumption
percentage of each operator replica’s machine. RAPP trans-
forms the incoming metrics in the percentage of available
memory and CPU. Then, the ratio is computed by the
average of the percentage of available memory and CPU.

V. PROTOTYPE, EXPERIMENTAL SETUP AND
PERFORMANCE EVALUATION

This section presents the setup and methodology of the ex-
periments, the implementation of a prototype, and discusses
the obtained results with BurstFlow.

A. BURSTFLOW PROTOTYPE

The software stack of the BurstFlow prototype is shown
in Figure 3. The Data Orchestrator was developed using
Python with open source libraries to open connections with
the MQS. The MQS is the Apache Kafka 1.0.0 since it
provides high-level API, scalability, system log, replication,
and repartition. The Kafka API allows managing partitions
of each topic and setting up the consumption using the
partition manager. The used SP framework is Apache Flink
1.1.5 with Hadoop 2.4, which has proven to be an efficient
and the state-of-the-art solution to process SP applications,
providing further enhancements in data distribution and
management. Moreover, the prototype utilizes the Hadoop
Distributed File System (HDFS) as a Distributed File Sys-
tem (DFS) component and it runs along with the Apache
Flink’s Master.

FIGURE 3. BurstFlow prototype.

The system provides the Java™ Platform, Standard Edi-
tion Development Kit (JDK™) 8.181, which is used by
the core of Apache Flink and Kafka framework. It also
comprises the JMX (Java Management Extensions) frame-
work for the serialization schema and logging. The Partition

Balancer was implemented by implementing a Partitioner 1

function in Apache Flink and calling it using the partition-
Custom function in the data stream. It is partially written
in Python and Java. It is required to be in Java since Flink
API does not offer the physical management of partitions
in any other language than Java. The Partition Balancer is
configurable in the dispatcher deployment and applies the
partitioning algorithms. It is statically defined and requires
to redeploy to change the algorithm. Although in Apache
Flink, it is possible to use multiple algorithms to partition
data streams inside the cluster in each operator.

The Resource Watcher consumes the logs files from the
Apache Flink monitor, using the JMX monitor, like a service
that provides insight into the cluster’s states and conditions
(i.e., network throughput, memory and CPU consumption,
etc.). It is written in Python and performs as a client that
consumes information from the JMX monitor. It collects
information regarding the resources and makes it available
to make decisions accordingly.

B. EXPERIMENTAL SETUP
The experiments were performed over distributed data cen-
ters of the Microsoft Azure Cloud. The setup was designed
to analyze the viability of the solution in an MC geo-
graphically distributed infrastructure as depicted in Figure 4,
where:

• Data Sources: The messages are produced by 10 A3
instances in Brazil’s South and each one produces data
using 100 threads to mimic 100 sensors. Each thread
runs a Data Orchestrator to create the micro-bathes and
to forward them to the MQS.

• MQS: The MQS runs Apache Kafka in a A3 instance
in the East US data center for temporarily storing
messages in queues that are later consumed by the SP
framework.

• SP Framework: The SP framework is composed by 5
Virtual Machiness (VMs) instances located in the West
US data center with different resource capabilities: 1
A8 instance for the Master, 1 D11 instance for the
Slave1, 1 A4 instance for the Slave2, 1 A2 instance for
the Slave3 and 1 A3 instance for the Resource Watcher.

The details of each VM instance are shown in the
Table 2. The Mirosoft Azure’s VM sizes were designed
and optimized for compute-intensive and network-intensive
applications by Azure as well as, we follow and reproduce
well-defined scenarios observed in the related work section.
Each VM instance has the Intel Xeon E52670 2.6GHz
processor, DDR3 1600 MHz RAM and the Operational
system is Ubuntu Server 16.04. The clock of all VMs are
synchronised using Network Time Protocol (NTP). Finally,
we provided a real world scenario by setting up a hetero-
geneous environment with varied configurations in terms of

1https://ci.apache.org/projects/flink/flink-docs-release-
1.1/api/java/org/apache/flink/api/common/functions/class-
use/Partitioner.html

VOLUME 4, 2016 7



Paulo R. R. de Souza Junior et al.: Boosting Big Data Streaming Applications in Clouds with BurstFlow

hardware specification (VM sizes) and network round-trip
latency2, see Table 3.

FIGURE 4. Experimental MC infrastructure.

TABLE 2. VM instance characteristics.

Size #CPU
Cores Memory (GB) Max Available

Storage (GiB)

Network
Bandwidth
(Mbps)

A2 2 3.5 40 1000
A3 4 7 80 1000
A4 8 14 100 1000
A8 8 56 1023 2000
D11 2 14 200 1000

TABLE 3. Round-trip latency between Microsoft Azure regions.

Who From To Latency (ms)
Data Sources Brazil’s South East US 117
MQs East US West US 65
SP Framework West US West US -

Evaluated Application: The evaluation considers the
sentiment analysis application, shown in Figure 5, which
implements a typical SP application of sentiment analysis.
The application classifies incoming tweets into two classes,
positive and negative. The first operator receives the in-
coming data and parses it to an understandable format.
Later, the next operator can perform a FlatMap to split
all the words from every tweet into sets for each tweet.
The next operator is responsible for grouping the data by
keyword, and then the reduce operator sums up each word’s
total frequency in its individual tweet. The classification
performs a standard naïve Bayes algorithm that analyzes
the tweet word’s frequency in a tweet against a positive and
negative database. Therefore, the higher frequency defines
the class as positive or negative, sending the result to the
sink operator, which pushes the message to a message
queue.

The used dataset3 comprises tweets collected on-line
using Twitter API between July 13, 2016, and November
10, 2016, related to the 2016 US election. Each tweet size

2A full table can be found here: https://docs.microsoft.com/en-
us/azure/networking/azure-network-latency

3A similar dataset can be found in <https://dataverse.harvard.edu/dataset.
xhtml?persistentId=doi:10.7910/DVN/PDI7IN>

FIGURE 5. Sentiment Analysis application.

is equivalent to 224 bytes at maximum (because the tweet
size can vary), the input data size can achieve a 2.5 KB
maximum by one micro-batch size [12]. The dataset is
divided into slices of 2 GB, and each slice is assigned in
a round-robin fashion across the 100 threads of the Data
Source. This data distribution leads to having 200 GB in
each experiment.

Comparison: BurstFlow is compared against the Base-
line approach to demonstrate the benefits of ETAMBS
regarding employing micro-batch methods. The Baseline is
the state-of-the-art solution, and it is widely employed by
SP applications because it handles messages one-at-a-time
fashion allowing the system to achieve real-time analytics.
This approach includes the network latency to each mes-
sage, which can cause problems in MC. The BurstFlow’s
RAPP is compared against the state-of-the-art algorithms
implemented in the standard version of Apache Flink. The
data partition algorithms are described as follows:

• Baseline: This solution only considers one-at-a-time
messages and distributes them in a round-robin fashion
to the operator replicas;

• Flink’s Broadcast: This solution sends each message
to all operator replicas and picks the one that finishes
first;

• Flink’s Random (Shuffle): Distributes incoming
micro-batches randomly across the operator replicas ac-
cording to a uniform distribution for the next operation;
and

• Flink’s Rebalance: Distributes incoming micro-
batches in a round-robin fashion, creating equal load
per operator partition.

The performance metrics comprise:
• Execution Time: the time required to process the

whole dataset.
• Throughput: each machine of the Apache Flink

cluster has its outputs measured in messages and MB.
The throughput is measured after the sink, which is
usually the final step of an SP application.

• Event Time: the time per-message to traverse the
whole infrastructure. This time is computed by dividing
the micro-batch size and the Execution Time.

8 VOLUME 4, 2016



Paulo R. R.de Souza Junior et al.: Boosting Big Data Streaming Applications in Clouds with BurstFlow

FIGURE 6. Throughput comparison between Baseline and BurstFlow.

• Used Memory and CPU: the CPU and memory
consumption of each machine of the Apache Flink’s
cluster.

The metrics were selected from the most commonly cho-
sen for measuring SP systems and load balance algorithms.
The throughput is measured using the JMX monitor. The
JMX is a Java framework for monitoring Java applications,
and it provides easy integration with multiple systems and
Big Data frameworks from the Apache family. While the
CPU and memory consumption are measured using dstat4,
which is a tool for generating system resource statistics.

C. PERFORMANCE EVALUATION
The experiments were defined based on the evaluation of
the design patterns proposed on Jain Methodology [31]
where each set of experiment is carried out 30 times.
The performance evaluation consists of a direct comparison
between BurstFlow and the most common approach in state
of the art, and an evaluation considering BurstFlow’s RAPP
and the state-of-the-art solutions for data partitioning.

1) BurstFlow vs. Baseline
This experiment compares the performance of BurstFlow’s
ETAMBS and the Baseline. BurstFlow’s ETAMBS uses the
same policy the the Baseline (i.e., round-robin) to distribute
data across the operator replicas. The main objective is
to demonstrate the achieved throughput in the application
inside the cluster in comparison with baseline.

Figure 6 introduces the overall view of the throughput.
The y-axis measures throughput in MB and the x-axis mea-
sures the execution time in seconds. At a first observation,
the BurstFlow’s ETAMBS begins with lower throughput
than the Baseline because messages must be accumulated in
the micro-batch. In contrast, the Baseline sends messages to
the MQS as they are generated. However, when the micro-
batch arrives at the SP framework, BurstFlow increases its

4Available in https://linux.die.net/man/1/dstat

throughput. BurstFlow’s ETAMBS determines the micro-
batch sizes dynamically, making the throughput more stable
– low variance in the throughput (an average of 1.5GB/s)
between the 500 seconds up to the end of the experiment.
This happens because BurstFlow’s ETAMBS includes a
single network latency to a set of messages, while the
Baseline includes every message.

2) Throughput, Execution Time and Resource Consumption
Evaluations
This set of experiments evaluates the impacts on throughput
and CPU and memory consumption for consuming mes-
sages from the MQS and distributing them across operator
replicas. The experiments adopt the default configuration
on Apache Flink, where each core corresponds to one slot.
Therefore, there are 24 available slots – master machine
provides 8 slots, Slave1 2 slots, Slave2 8 slots, and Slave3
2 slots. The parallelism degree in Apache Flink is static
as dynamic adjustments can not be made on-the-fly with-
out stopping and restarting the whole system. The default
configuration in Apache Flink deploys one pipeline per slot
– i.e., the whole sequence of operators of the Sentiment
Analysis application. The experiments consider the state-of-
the-art policies implemented in Apache Flink, BurstFlow’s
RAPP, and Baseline.

Execution Time and Throughput: The first evaluation
comprises an analysis of the execution time with and
without BurstFlow’s ETAMBS, as presented in Table 4.
The results demonstrate the improvements when utilizing
the proposed solution for determining the micro-batch sizes
dynamically. BurstFlow’s ETAMBS allows the system to
reduce the execution time by over 8%. The benefits vary
between the different data partition policies as each one
distributes differently the incoming workloads. BurstFlow’s
ETAMBS permits operator replicas to receive micro-batches
with several tweets. In contrast, no BurstFlow’s ETAMBS
requires each operator replica to consume one tweet at-a-
time from the MQS. This data transfer adds an average of
65 ms to each tweet retrieval because of the network latency
between the East US data center and the East US data center.

TABLE 4. Execution time in seconds with and without ETAMBS.

Algorithms w/o ETAMBS w/ ETAMBS Gain (%)

BurstFlow’s RAPP 6276 5400 16
Baseline 7380 7380 -
Flink’s Broadcast 6364 5880 8
Flink’s Random 10200 9180 11
Flink’s Rebalance 10756 9540 13

Table 5 presents a comparison between BurstFlow’s
RAPP and state-of-the-art solutions by considering
ETAMBS, except Baseline which considers one at-a-time.
The table contains the execution time in seconds and
the percentage of improvement that BurstFlow’s RAPP
achieved compared to the other solutions (% of Gain). The

VOLUME 4, 2016 9



Paulo R. R. de Souza Junior et al.: Boosting Big Data Streaming Applications in Clouds with BurstFlow

improvement is evident with any algorithm. In particular, the
Flink’s Broadcast sends a copy of each micro-batch to each
operator replica, and it picks the outcomes from the operator
replica who finishes first. This allows the Flink’s Broadcast
to achieve only % higher execution time than BurstFlow’s
RAPP. However, this performance improvement requires
a higher effort in the network and computing resources
because of wasting time processing spare copies of the
micro-batches. Nevertheless, BurstFlow’s RAPP is 37%,
70%, and 77% faster than Baseline, Flink’s Random, and
Flink’s Rebalance respectively because it implements an
algorithm to deal with heterogeneous workloads.

TABLE 5. Average execution time duration.

Algorithms Execution time (s) Gain (%)

BurstFlow’s RAPP 5400 -
Flink’s Broadcast 5880 9
Baseline 7380 37
Flink’s Random 9180 70
Flink’s Rebalance 9540 77

FIGURE 7. Throughput per node.

SP clusters often comprise homogeneous computing re-
sources, and current solutions cannot manage the distribu-
tion of incoming workloads in heterogeneous clusters. This
happens because existing data partition solutions, even for
stateless operators, neglect the required time for processing
an incoming workload into resource with low throughput.

The workload in each operator replica varies mainly be-
cause each micro-batch has a different number of messages
requiring different times for parsing the micro-batches in
the Sentiment Analysis application. The Classify operator
also leads to a different workload as it requires access to a
database in the HDFS in order to check the frequency of
positive and negative words in each tweet.

Figure 7 summarizes the throughput per node when ap-
plying BurstFlow’s RAPP and the state-of-the-art solutions,
where the y-axis is the number of processed messages
while the x-axis is the execution time in seconds. Flink’s
Rebalance distributes the workload in a round-robin fashion,
neglecting the required time to process each micro-batch.
Likewise, Flink’s Random divides the workload using a
uniform distribution. In contrast, BurstFlow’s RAPP creates
a ratio between memory and CPU per operator replica,
which is updated periodically. This ratio leads to 2.5 times
less execution time because it assigns a micro-batch to the
most available machines, avoiding waiting times resulted
from queued workloads.

The BurstFlow’s RAPP algorithm provides an almost fair
distribution, with a more homogeneous throughput in com-
parison with the Flink’s Broadcast in most of the execution
time as seen in Figure 7. Master and Slave 2 have more
free resources to task execution than Slave 3, with two cores
and a 3.5 GB memory. In this aspect, the RAPP algorithm
promotes 1.9 times more computational resource usage than
Flink’s Broadcast. Flink’s Broadcast also transmits messages
for all computing resources, promoting data deluge in the
internal memory buffer and decreasing CPU consumption
but a higher computational cost. In the next experiments,
this resource consumption is evaluated in detail.

Resource Consumption: The resource consumption
evaluation enables identifying bottlenecks that impact the
application performance and the solution as a whole. This
subsection analyses the Central Processing Unit (CPU)
and memory use collected during the execution time of
applications. The results are the average execution time to
each experiment.

Figure 8, in the top, shows the results of the experiment
evaluating the average CPU usage for each machine in the
cluster for the algorithms applied to the BurstFlow. The CPU
usage is measured in percentage at the y-axis, and the x-axis
shows the machines. This experiment evaluates the influence
of BurstFlow on CPU usage.

In comparison, side by side, the presence of the ETAMBS
approach with the BurstFlow’s RAPP is up to 49%, in mean,
more efficient in exploring the available CPU resources
in opposition without its use. This result is due to the
BurstFlow with ETAMBS approach having more data to
process at the same time compared to the approach without
resizing the data flow. The one-at-a-time approach uses, in
the mean, 40% fewer CPU resources to a higher delay of
36% of execution time. Thus it produces lower execution
throughput and requires more communication, which results
in the application delay.

10 VOLUME 4, 2016



Paulo R. R.de Souza Junior et al.: Boosting Big Data Streaming Applications in Clouds with BurstFlow

FIGURE 8. Average per node.

The CPU usage reflects in the use of memory for the
same scenarios. Figure 8 in the bottom displays the average
memory use of each node. The y-axis measures the memory
use in GB and the x-axis indicates the machines. There are
some contrasts in this chart because the BurstFlow’s RAPP
with ETAMBS seeks to optimize use of the memory. The
memory is determinant for stream processing because the
raw data is temporarily persisted in memory to be computed.
Thus, more homogeneous memory use is expected as well
as more CPU use since there is more data to process due
to the flow re-partitioning of data.

BurstFlow’s RAPP explores better the available CPU
resources without to compromise the memory use. It is clear
that the BurstFlow’s RAPP uses more CPU and memory in
comparison with baseline execution, either by a minimal
overhead in resizing the input data either by having more
data to process at same time. Other important details are that
Flink’s Broadcast compared with BurstFlow’s RAPP has a
32% lower use of processor and 36% higher consumption
of memory on the average.

In general, CPU usage achieves more availability with
BurstFlow, and owing to this, the performance increases.
It may not be ideal in some cases, such as using Flink’s
Random and Flink’s Rebalance algorithms when the data
distribution approach is to create equal load per partition or
seeking a uniform distribution.

D. THREATS TO VALIDITY
The experiments evaluation was performed in the Microsoft
Azure Cloud Computing Platform, and due to this, the
model has the following assumptions:

1) The machines are stables without failures and with a
high SLA level;

2) The Data Orchestrator, Apache Kafka, and Apache
Flink are safe and not exposed to the Internet directly,
because they are behind the Microsoft Azure Firewall,
and therefore the model is not subject to hackers or
malicious users.

VI. CONCLUSIONS AND FUTURE WORK
This paper introduced BurstFlow, a promising tool for en-
hancing communication between multiple cloud providers.
The proposed solution overcomes existing orchestration
issues presented in cloud-based stream processing frame-
works. For instance, Apache Flink permits to deploy ap-
plications on a single cloud provider while the proposed
tool manages the computing resources dynamically in a
geographically distributed MC infrastructure. The proposed
solution also improves the application latency and through-
put by automatically adjusting the size of micro-batches
using a feedback loop to collect metrics and make decisions.

BurstFlow also enables to control the distribution of data
in each operator replica by employing ad-hoc partitioning
policies. This flexibility leverages BurstFlow to be applied
to multiple scenarios without compromising memory usage,
avoiding the swap context between storage and memory, and
leading to low application latency. Our solution was evalu-
ated in an MC deployment utilizing a real-world application.
The proposed solution was compared to the state-of-the-art
methods for data partitioning and policies used in Apache
Flink and cloud-based solutions. Results have shown that
BurstFlow reduces the execution time by 77% in the best
case, improves the CPU and memory usage by up to 49%,
and delivers the throughput of approximately 1.5GB/s.

For future work, BurstFlow intends to include methods to
estimate the micro-batches sizes by considering the infor-

VOLUME 4, 2016 11



Paulo R. R. de Souza Junior et al.: Boosting Big Data Streaming Applications in Clouds with BurstFlow

mation of stream processing operators. For example, a big
part of stream processing applications has stateful operators.
These operators often process incoming data according to
a counter or time window. Considering the requirements
to build a window, we plan to adjust how to compute the
size of the micro-batches that will be transferred between
cloud providers. Also, it is feasible to evaluate our tool using
benchmarks from multiple fields in order to demonstrate all
the existing benefits of BurstFlow.

REFERENCES
[1] M. Hilbert, Big data for development: A review of promises and chal-

lenges, Journal of Development Policy Review 34 (1) (2016) 135–174.
doi:10.1111/dpr.12142.

[2] N. Miloslavskaya, A. Tolstoy, Application of big data, fast data, and
data lake concepts to information security issues, in: Proceedings of the
4th International Conference on Future Internet of Things and Cloud
Workshops. FiCloudW’16, IEEE, 2016, p. 148–153. doi:10.1109/W-
FiCloud.2016.41.

[3] T. Mohammed, A. Albeshri, I. Katib, R. Mehmood, Ubipriseq—deep
reinforcement learning to manage privacy, security, energy, and qos
in 5g iot hetnets, Applied Sciences 10 (20) (2020) 7120:1–18.
doi:10.3390/app10207120.

[4] N. Janbi, I. Katib, A. Albeshri, R. Mehmood, Distributed artificial
intelligence-as-a-service (daiaas) for smarter ioe and 6g environments,
Sensors 20 (20) (2020) 5796:1–28. doi:10.3390/s20205796.

[5] M. T. Tun, D. E. Nyaung, M. P. Phyu, Performance evaluation of intrusion
detection streaming transactions using apache kafka and spark streaming,
in: 2019 International Conference on Advanced Information Technologies
(ICAIT), IEEE, 2019, p. 25–30. doi:10.1109/AITC.2019.8920960.

[6] J. Abawajy, Comprehensive analysis of big data variety landscape, Journal
of Parallel, Emergent and Distributed Systems. Taylor & Francis 30 (1)
(2015) 5–14. doi:10.1080/17445760.2014.925548.

[7] K. J. Matteussi, B. F. Zanchetta, G. Bertoncello, J. Dos Santos, J. C. S.
dos Anjos, C. F. R. Geyer, Analysis and performance evaluation of
deep learning on big data, in: IEEE Symposium on Computers and
Communications (ISCC) (ISCC’19), Barcelona, Spain, 2019, p. 1–6.
doi:10.1109/ISCC47284.2019.8969762.

[8] A. Katsifodimos, S. Schelter, Apache flink: Stream analytics at scale,
in: 2016 IEEE International Conference on Cloud Engineering Workshop
(IC2EW), 2016, p. 193–193. doi:10.1109/IC2EW.2016.56.

[9] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gon-
zalez, S. Shenker, I. Stoica, Apache spark: A unified engine for big data
processing, Journal of Communications. ACM 59 (11) (2016) 56–65.
doi:10.1145/2934664.

[10] J. Berlinska, M. Drozdowski, Comparing load-balancing algorithms for
mapreduce under zipfian data skews, Parallel Computing 72 (2018) 14–28.
doi:10.1016/j.parco.2017.12.003.

[11] E. Alomari, I. Katib, R. Mehmood, Iktishaf: a big data road-traffic event
detection tool using twitter and spark machine learning, Mobile Networks
and Applications (2020) 1–16doi:10.1007/s11036-020-01635-y.

[12] R. Tudoran, A. Costan, O. Nano, I. Santos, H. Soncu, G. Antoniu,
Jetstream: Enabling high throughput live event streaming on multi-site
clouds, Journal of Future Generation Computer Systems. Elsevier 54 (Sup-
plement C) (2016) 274–291. doi:10.1016/j.future.2015.01.016.

[13] M. Welsh, D. Culler, E. Brewer, Seda: An architecture for well-
conditioned, scalable internet services, Journal of Operating Systems
Review. ACM 35 (5) (2001) 230–243. doi:10.1145/502059.502057.

[14] T. Das, Y. Zhong, I. Stoica, S. Shenker, Adaptive stream processing using
dynamic batch sizing, in: Proceedings of the ACM Symposium on Cloud
Computing, ACM, 2014, p. 1–13. doi:10.1145/2670979.2670995.

[15] A. Aral, T. Ovatman, A decentralized replica placement algorithm for
edge computing, IEEE Transactions on Network and Service Management
15 (2) (2018) 516–529. doi:10.1109/TNSM.2017.2788945.

[16] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, S. U. Khan,
The rise of “big data” on cloud computing: Review and open research
issues, Journal of Information Systems. Elsevier 47 (Supplement C) (2015)
98–115. doi:10.1016/j.is.2014.07.006.

[17] C. Rista, D. Griebler, C. A. F. Maron, L. G. Fernandes, Improving
the network performance of a container-based cloud environment for
hadoop systems, in: Proceedings of the International Conference on High
Performance Computing Simulation. HPCS’17, IEEE, 2017, p. 619–626.
doi:10.1109/HPCS.2017.97.

[18] J. C. S. dos Anjos, K. J. Matteussi, P. R. R. De Souza, G. J. A.
Grabher, G. A. Borges, J. L. V. Barbosa, G. V. González, V. R. Q.
Leithardt, C. F. R. Geyer, Data processing model to perform big data
analytics in hybrid infrastructures, IEEE Access 8 (2020) 170281–170294.
doi:10.1109/ACCESS.2020.3023344.

[19] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M.
Patel, K. Ramasamy, S. Taneja, Twitter heron: Stream processing at scale,
in: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’15, ACM, New York, NY, USA, 2015, p.
239–250. doi:10.1145/2723372.2742788.

[20] Q. Zhang, Y. Song, R. R. Routray, W. Shi, Adaptive block and batch
sizing for batched stream processing system, in: 2016 IEEE International
Conference on Autonomic Computing (ICAC), IEEE, 2016, p. 35–44.
doi:10.1109/ICAC.2016.27.

[21] J. C. S. dos Anjos, K. J. Matteussi, P. R. de Souza, Jr, A. S. da Veith,
G. Fedak, J. L. V. Barbosa, C. F. R. Geyer, Enabling strategies for big
data analytics in hybrid infrastructures, 16th Edition, HPCS - International
Conference on High Performance Computing and Simulation, IEEE Com-
puter Society, 2018, p. 869–876. doi:10.1109/HPCS.2018.00140.

[22] R. Fernandez, P. R. Pietzuch, J. Kreps, N. Narkhede, J. Rao, J. Koshy,
D. Lin, C. Riccomini, G. Wang, Liquid: Unifying nearline and offline big
data integration, in: CIDR, 7th Biennial Conference on Innovative Data
Systems Research, 2015, p. 1–8.

[23] Apache, Zookeeper, available in https://zookeeper.apache.org/ (2020).
URL https://zookeeper.apache.org/

[24] Z. Zhuang, T. Feng, Y. Pan, H. Ramachandra, B. Sridharan, Effective
multi-stream joining in apache samza framework, in: 2016 IEEE Interna-
tional Congress on Big Data (BigData Congress), IEEE Computer Society,
2016, p. 267–274. doi:10.1109/BigDataCongress.2016.41.

[25] V. Gulisano, R. Jiménez-Peris, M. Patiño-Martínez, C. Soriente, P. Val-
duriez, Streamcloud: An elastic and scalable data streaming system,
IEEE Transactions on Parallel and Distributed Systems 23 (12) (2012)
2351–2365. doi:10.1109/TPDS.2012.24.

[26] Z. Zhao, H. Zhang, X. Geng, H. Ma, Resource-aware cache manage-
ment for in-memory data analytics frameworks, in: 2019 IEEE Intl
Conf on Parallel & Distributed Processing with Applications, Big Data
& Cloud Computing, Sustainable Computing & Communications, So-
cial Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom),
IEEE, 2019, p. 364–371. doi:10.1109/ISPA-BDCloud-SustainCom-
SocialCom48970.2019.00060.

[27] W. Xiu, J. Guo, Y. Li, A memory management strategy based on task
requirement for in-memory computing, in: 2020 Asia-Pacific Conference
on Image Processing, Electronics and Computers (IPEC), IEEE, 2020, p.
406–412. doi:10.1109/IPEC49694.2020.9115157.

[28] Z. Tang, A. Zeng, X. Zhang, L. Yang, K. Li, Dynamic memory-aware
scheduling in spark computing environment, Journal of Parallel and Dis-
tributed Computing 141 (2020) 10 – 22. doi:10.1016/j.jpdc.2020.03.010.

[29] K. Cao, Y. Liu, G. Meng, Q. Sun, An overview on edge
computing research, IEEE Access 8 (2020) 85714–85728.
doi:10.1109/ACCESS.2020.2991734.

[30] R. Buyya, A. V. Dastjerdi, Internet of Things: Principles and Paradigms,
1st Edition, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2016.

[31] R. Jain, The art of computer systems performance analysis - techniques
for experimental design, measurement, simulation, and modeling., 2nd
Edition, Wiley, 1991.

12 VOLUME 4, 2016


