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Abstract. The Internet of Things has enabled many application sce-
narios where a large number of connected devices generate unbounded
streams of data, often processed by data stream processing frameworks
deployed in the cloud. Edge computing enables offloading processing from
the cloud and placing it close to where the data is generated, whereby re-
ducing both the time to process data events and deployment costs. How-
ever, edge resources are more computationally constrained than their
cloud counterparts. This gives rise to two interrelated issues, namely de-
ciding on the parallelism of processing tasks (a.k.a. operators) and their
mapping onto available resources. In this work, we formulate the scenario
of operator placement and parallelism as an optimal mixed integer lin-
ear programming problem. To overcome the issue of scalability with the
optimal model, we devise a resource selection technique that reduces the
number of resources evaluated during placement and parallelization deci-
sions. Experimental results using discrete-event simulation demonstrate
that the proposed model coupled with the resource selection technique
is 94% faster than solving the optimal model alone, and it produces so-
lutions that are only 12% worse than the optimal, yet it performs better
than state-of-the-art approaches.

Keywords: Data Stream Processing · Operator Placement · Operator
Parallelism · End-to-end Latency · Edge Computing.

1 Introduction

A Data Stream Processing (DSP) application is often structured as a directed
graph whose vertices represent data sources, operators that execute a function
over incoming data, and data sinks; and edges that define the data interdepen-
dencies between operators [4]. DSP applications are often deployed in the cloud
to explore the large number of available resources and benefit from its pay-as-
you-go business model. The growth of the Internet of Things (IoT) has led to
scenarios where geo-distributed resources at the edge of the network act both
as data sources and actuators or consumers of processed data. Streaming all
this data to a cloud through the Internet, and sometimes back, takes time and
quickly becomes costly [4].
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Exploration of computing resources from both the cloud and the Internet
edges is called as cloud-edge infrastructure. This paradigm combines cloud, micro
datacenters, and IoT devices and can minimize the impact of network communi-
cation on the latency of DSP applications. An inherent problem, however, relies
upon deciding how much and which parts of a DSP application to offload from
the cloud to resources elsewhere. This problem, commonly known as operator
placement and shown to be NP-Hard [2], consists in finding a set of resources
to host operators while meeting the application requirements. The search space
can be large depending on the size and heterogeneity of the infrastructure.

When offloading operators from the cloud, the DSP framework needs to ad-
just the operators’ parallelism and hence decide how to create the number of op-
erator instances to achieve a target throughput. The operator placement needs
to address two interrelated issues, namely deciding on the number of instances
for each operator and finding the set of resources to host the instances; while
guaranteeing performance metrics such as application throughput and end-to-
end latency. As an additional level of complexity, the deployment of DSP appli-
cations in public infrastructure, such as a cloud, incurs monetary costs, which
must be considered when deciding on where to place each DSP operator and
how many replicas to create.

This work describes the Cloud-Edge Stream Model (CES), an extension of
an optimal Mixed Integer Linear Programming (MILP) model introduced in
our previous work [16] for the problem of determining the degree of parallelism
and placement of DSP applications onto cloud-edge infrastructure. The model
is enhanced with a heuristic that improves its scalability. We devise a solution
for estimating the number of replicas, and the processing and bandwidth re-
quirements of each operator to respect a given throughput and minimize the
application end-to-end latency and deployment costs. The contributions of this
work are therefore: (i) it presents a MILP model for the joint-optimization of
operator parallelism and placement on cloud-edge infrastructure to minimize the
data transfer time and the application deployment costs (§2); (ii) it introduces
a resource selection technique to improve the system scalability (§3); and (iii) it
evaluates the model and the resource selection technique against traditional and
state-of-the-art solutions (§4).

2 Proposed Model

This section introduces preliminaries, the placement problem and CES.

2.1 System Model

This work considers a three-layered cloud-edge infrastructure, as depicted in
Figure 1, where each layer contains multiple sites. The IoT layer contains nu-
merous geo-distributed computational constrained resources, therefore, often
acting as source or sinks, but with non negligible computational capacity to
support some DSP operators. Micro Datacenters (MDs) provide geo-distributed
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resources (e.g., routers, gateways, and micro datacenters), but with less strin-
gent computational constraints than those in the IoT layer. The cloud comprises
high-end servers with fewer resource constraints [13].

...

IoT Sites

 Private Infrastructure

 Public Infrastructure

Micro
Datacenters

Cloud
Sites

... ...... ... ... ...

Fig. 1. Target infrastructure.

The three-layered cloud-edge infrastruc-
ture is represented as a graph GI = 〈R,P〉,
where R is the set of computing resources
of all layers (RIoT ∪ RMD ∪ Rcloud), and
P is the set of network interconnections be-
tween computing resources. Each k ∈ R has
CPU (CPUk) and memory (Memk) capaci-
ties, given respectively in 100×num of cores,
and bytes. The processing speed of a resource
(Vk) is its CPU clock in GHz. Similar to exist-
ing work [9], the network has a single intercon-
nection between a pair of computing resources
k and l, and the bandwidth of this intercon-
nection is given by Bwk,l and its latency is Latk,l.

The application graph specified by a user is a directed graph GA = 〈O, E〉,
where O represents data source(s) SourceO, data sink(s) SinkO and transforma-
tion operators TransO, and E represents the streams between operators, which
are unbounded sequences of data (e.g., messages, packets, tuples, file chunks) [4].
The application graph contains at least one data source and one data sink. Each
operator j ∈ O is the tuple 〈Sj , Cj ,U j , ARj〉, where Sj is the selectivity (mes-
sage discarding percentage), Cj is the data transformation factor (how much
it increases/decreases the size of arriving messages), U j is the set of upstream
operators directly connected to j, and ARj is the input rate in Bps that arrives
at the operator. When operator j is a data source (i.e., j ∈ SourceO) its input
rate is the amount of data ingested into the application since U j = ∅. Otherwise,
ARj is recursively computed as:

ARj =
∑
i∈Uj

ρi→j ×DRi (1)

where ρi→j is the probability that operator i will send an output message to
operator j, capturing how operator i distributes its output stream among its
downstream operators. DRi is the departure rate of operator i after applying
selectivity Si and the data transformation factor Ci to the input stream:

DRi = ARi × (1− Si)× Ci (2)

A physical representation of the application graph is created when operators
are placed onto available resources as depicted in Figure 2. Operators placed
within the same host communicate directly whereas inter-resource communica-
tion is done via the Data Transfer Service. Messages that arrive at a computing
resource are received by the Dispatching Service, which then forwards them to
the destination operator within the computing resource. This service also passes
messages to the Data Transfer Service when inter-resource communication is
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required. Each operator comprises an internal queue and a processing element,
which are treated as a single software unit when determining the operator prop-
erties (e.g., selectivity and data transformation factor), and its CPU and memory
requirements. Moreover, an operator may demand more CPU than what a single
resource can offer. In this case, multiple operator replicas are created in a way
that each individual replica fits a computing resource.

Physical and framework communication Logical communication

IoT 1

Message
Queue

IoT 2

Data Transfer

Service

Dispatching
Service

Data Source

Placement
SinkData

Source

Op. 1

Op. 2
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Fig. 2. Application graph adjusted to the computing resource capacities (placement).

The quality of a placement is guaranteed by meeting the application require-
ments. The CPU and memory requirements of each operator j for processing
its incoming byte stream are expressed as Reqjcpu and Reqjmem and they are ob-

tained by profiling the operator on a reference resource [1]. Ref jcpu, Ref jmem and

Ref jdata refers to the reference CPU, memory and processed data of operator j,
respectively. Since CPU and memory cannot be freely fractioned, the reference
values are rounded up and combined with ARj of j in order to compute Reqjcpu
and Reqjmem that handle the arriving data stream:

Reqjcpu =

⌈
Ref jcpu ×ARj

Ref jdata

⌉
and Reqjmem =

⌈
Ref jmem ×ARj

Ref jdata

⌉
(3)

2.2 Problem Formulation

The problem is modeled as a MILP with variables x(j, l) and f(i, k → j, l).
Variable x(j, l) accounts for the amount of bytes that a replica of operator j can
process on resource l, whereas variable f(i, k → j, l) corresponds to the number
of bytes that operator replica i on resource k sends to downstream operator
replica j deployed on resource l.

The data ingestion rate in sources is constant and stable. Hence, it is possible
to compute CPU and memory requirements recursively to the entire application
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to handle the expected load. Placing an application onto computing resources
incurs a cost. This cost is derived from Amazon Fargate’s pricing scheme3.The
cost of using one unit of CPU and storing one byte in memory at resource l is
given by Ccpu(l) and Cmem(l), respectively. While the cost of transferring a byte
over the network from resource k to l is denoted by Cbw(k, l).

As cloud-edge infrastructure comprises heterogeneous resources, the model
applies a coefficient Ωl = Ref jV /Vl to adapt the operator requirements to re-

source l. Ref jV is the reference processing speed of the resource for operator j,
and Vl is the clock speed of resource l. The computational cost is given by:

CC =
∑
l∈R

∑
j∈O

Ccpu(l)×
Req

j
cpu
Ωl

×β×x(j,l)
ARj

maxCcpu(l)
+
Cmem(l)× Reqjmem×x(j,l)

ARj

maxCmem(l)
(4)

where maxCcpu(l) and maxCmem(l) are the cost of using all the CPU and
memory capacity of resource l. The CPU and memory costs are normalized
using their maximum amounts resulting in values between 0 and 1. β refers to a
safety margin to each replica requirements aiming to a steady safe system. This
margin relies on Queueing Theory premises to avoid an operator reaching the
CPU limits of a given computing resource, which requires a higher queuing time.

The network cost NC is computed as:

NC =
∑
p∈P

∑
a,b∈p

∑
j∈O

∑
i∈Uj

Cbw(a, b)× f(i, ps → j, pd)

maxCbw(a, b)
(5)

where a, b is a link that represents one hop of path p, and a, b can belong to
multiple paths. The resources at the extremities of path p hosting replicas i and
j are given by ps and pd, respectively. NC is normalized by maxCbw(a, b), the
cost of using all the bandwidth available between resources a and b.

The Aggregate Data Transfer Time (ATT) sums up the network latency of
a link and the time to transfer all the data crossing it, and is normalized by the
time it takes to send an amount of data that fills up the link capacity:

ATT =
∑
p∈P

∑
k,l∈p

∑
j∈O

∑
i∈Uj

f(i, ps → j, pd)× (Latk,l + 1
Bwk,l

)

Latk,l + 1
(6)

The multi-objective function aims at minimizing the data transfer time and the
application deployment costs:

min : ATT + CC +NC (7)

The objective function is subject to:

Physical constraints: The requirements of each operator replica j on re-
source l are a function of x(j, l); i.e., a fraction of the byte rate operator j

3 https://aws.amazon.com/fargate/pricing



6 de Souza et al.

should process (ARj) with a safety margin (β). The processing requirements of
all replicas deployed on l must not exceed its processing capacity, as follows:

CPUl ≥
∑
j∈O

Reqjcpu
Ωl

× β × x(j, l)

ARj
and Meml ≥

∑
j∈O

Reqjmem × x(j, l)

ARj
(8)

To guarantee that the amount of data crossing every link a, b must not exceed
its bandwidth capacity:∑

j∈O

∑
i∈Uj

f(i, ps → j, pd) ≤ Bwa,b ∀a, b ∈ p;∀p ∈ P (9)

Processing constraint: The amount of data processed by all replicas of j must
be equal to the byte arrival rate of j:

ARj =
∑
l∈R

x(j, l) ∀j ∈ O (10)

Flow constraints: Except for sources and sinks, it is possible to create one
replica of operator j per resource, although the actual number of replicas, the
processing requirements, and the interconnecting streams are decided within the
model. The amount of data that flows from all replicas of i to all the replicas of
j is equal to the departure rate of upstream i to j:

DRi × ρi→j =
∑
k∈R

∑
l∈R

f(i, k → j, l) ∀j ∈ O;∀i ∈ Uj (11)

Likewise, the amount of data flowing from one replica of i can be distributed
among all replicas of j:

x(i, k)× (1− Si)× Ci × ρi→j =
∑
l∈R

f(i, k → j, l)

∀k ∈ R;∀j ∈ O;∀i ∈ Uj
(12)

On the other end of the flow, the amount of data arriving at each replica j of
operator i, must be equal to the amount of data processed in x(j, l):∑

i∈Uj

∑
k∈R

f(i, k → j, l) = x(j, l) ∀j ∈ O;∀l ∈ R (13)

Domain constraints: The placement k of sources and sinks is fixed and pro-
vided in the deployment requirements. Variables x(j, l) and f(i, k → j, l) repre-
sent respectively the amount of data processed by j in l, and the amount of data
sent by replica i in k to replica j in l. Therefore the domain of these variables is
a real value greater than zero:

x(j, l) = ARj ∀j ∈ SourceO ∪ SinkO;∀l ∈ R (14)

x(j, l) ≥ 0 ∀j ∈ TransO;∀l ∈ R (15)

f(i, k → j, l) ≥ 0 ∀k, l ∈ R; j ∈ O; i ∈ Uj (16)
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3 Resource Selection Technique

The three-layered cloud-edge infrastructure may contain thousands of computing
resources resulting in an enormous combinatorial search space when finding an
optimal operator placement. This work therefore proposes a pruning technique
that reduces the number of evaluated resources and finds a sub-optimal solution
under feasible time. The proposed solution extends the worst fit sorting heuristic
from Taneja et al. [17] by applying a resource selection technique to reduce the
number of considered computing resources when deploying operators.

The resource selection technique starts by identifying promising sites in each
layer from which to obtain computing resources. Following a bottom-up ap-
proach, it selects all IoT sites where data sources and data sinks are placed.
Then, based on the location of the selected IoT sites, it picks the MD site with
the shortest latency to each IoT site plus the MD sites where there are data
sources and data sinks placed. Last, the cloud sites are chosen considering their
latency-closeness to the selected MD sites as well as those with data sources
and data sinks. After selecting sites from each layer, the function GetResources
(Algorithm 1) is called for each layer.

As depicted in Algorithm 1, GetResources has as input the layer name,
the vector of selected sites in the layer and the set of operators. First, it calls
GetResourcesOnSites, to get all computing resources from the selected sites,
sorted by CPU and memory in a worst-fit fashion (line 3). Second, it selects
resources that host sources or sinks (lines 4-7). Third, CPU and memory re-
quirements from the operators that are neither sources or sinks are summed
to ReqCPU and ReqMem, respectively (line 9). When the evaluated layer is
IoT, ReqCPU and ReqMem are used to select a subset of computing resources
whose combined capacity meets the requirements (lines 18-21). For each operator
of the other two layers, the function selects a worst-fit resource that supports the
operator requirements. Since the goal is just to select candidate resources and
not a deployment placement, if there is no resource fit, it ignores the operator
and moves to the next one (lines 11-16). At last, the combination of resources
evaluated by the model contains those selected in each layer.

4 Performance Evaluation

This section describes the experimental setup, the price model for computing
resources, and performance evaluation results.

4.1 Experimental Setup

We perform an evaluation in two steps as follows. First CES is compared against
a combination of itself with the resource selection technique, hereafter called
CES-RS, to evaluate the effects that the resource pruning has on the quality
of solutions and on resolution time. Second, we compare CES-RS against state-
of-the-art solutions. The evaluations differ in the number of resources in the
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Algorithm 1: Resource selection technique.

1 Function GetResources(layer, Sites, O)
2 Selected← {}, ReqCPU ← 0, ReqMem← 0
3 Resources← GetResourcesOnSites (Sites)

4 foreach j ∈ (SourceO ∪ SinkO) do
5 if j.placement ∈ Resources then
6 Selected← Selected ∪ j.placement
7 Resources← Resources− j.placement

8 foreach j ∈ (O − (SourceO ∪ SinkO)) do
9 ReqCPU ← ReqCPU + CPUj , ReqMem← ReqMem + Memj

10 if layer! = IoT then
11 foreach r ∈ Resources do
12 if CPUr ≥ CPUj and Memr ≥Memj then
13 selected← selected ∪ r
14 Resources← Resources− r
15 break

16 Sort (Resources)

17 if layer == IoT then
18 foreach r ∈ Resources do
19 if CPUr ≤ ReqCPU or Memr ≤ ReqMem then
20 Selected← Selected ∪ r
21 ReqCPU ← ReqCPU −CPUr, ReqMem← ReqMem−Memr

22 else
23 break

24 return Selected

infrastructure and the solutions evaluated. Both evaluations are performed via
discrete-event simulation using a framework built on OMNET++ to model and
simulate DSP applications. We resort to simulation as it offers a controllable
and repeatable environment. The model is solved using CPLEX v12.9.0.

The infrastructure comprises three layers with an IoT site, one MD and one
cloud. The resource capacity was modeled according to the characteristics of the
layer in which a resource is located, and intrinsic characteristics of DSP appli-
cations. IoT resources are modeled as Raspberry Pi’s 3 (i.e., 1 GB of RAM, 4
CPU cores at 1,2 GHz). As DSP applications are often CPU and memory inten-
sive, the selected MD and cloud resources should be optimized for such cases.
The offerings for MD infrastructure are still fairly recent and, although there
is a lack of consensus surrounding what the MD is composed of, existing work
highlights that the options are more limited than those of the cloud, with more
general-purpose resources. In an attempt to use resources similar to those avail-
able on Amazon EC2, MD resources are modeled as general purpose t2.2xlarge
machines (i.e., 32 GB of RAM, 8 CPU cores at 3.0 GHz), and cloud servers are
high-performance C5.metal machines (i.e., 192 GB of RAM, 96 CPU cores at
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3.6 GHz). Resources within a site communicate via a LAN, whereas IoTs, MDs,
and cloud are interconnected by single WAN path. The LAN has a bandwidth
of 100 Mbps and 0.8 ms latency. The WAN bandwidth is 10 Gbps and is shared
on the path from the IoT to the MD or to the cloud, and the latency from IoT
is 20 ms and 90 ms to the MD and cloud, respectively. The latency values are
based on those obtained by empirical experiments carried out by Hu et. al [9].

Existing work evaluated application graphs of several orders and intercon-
nection probabilities, usually assessing up to 3 different graphs [4, 7, 8, 10]. To
evaluate CES and CES-RS we crafted five graphs to mimic the behaviour of large
DSP applications using a built-in-house python library. The graphs have varying
shapes and data replication factors for each operator as depicted in Fig. 3. The
applications have 25 operators, often more than what is considered in the liter-
ature [18]. They also have multiple sources, sinks and paths, similar to previous
work by Liu and Buyya [10]. As the present work focuses on IoT scenarios, the
sources are placed on IoT resources, and sinks are uniformly and randomly dis-
tributed across layers as they can be actuators – except for one sink responsible
for data storage, which is placed on the cloud.

(a) App 1 (b) App 2 (c) App 3 (d) App 4 (e) App 5

Fig. 3. Application graphs used in the evaluation.

The operator properties were based on the RIoTBench IoT application bench-
mark [15]. RIoTBench offers 27 operators common to IoT applications and 4
datasets with IoT data. The CITY dataset is used with 380 byte messages col-
lected every 12 seconds containing environmental information (temperature, hu-
midity, air quality) from 7 cities across 3 continents. It has a peak rate of 5000
tuples/s, which in the experiments is continuous and divided among sources.
The remaining properties are drawn from the values in Table 1.

We consider that Ref jcpu, Ref jdata, the arrival byte rate ARj , probability

that an upstream operator i sends data to j ρi→j , selectivity Sj , and data
transformation pattern Cj , are average values obtained via application profiling,
using techniques proposed in existing work [1]. With Ref jcpu and Ref jdata we are
able to compute requirements for each operator To create a worst case scenario
in terms of load, ρi→j is set to 1 for all streams in the application request. As the
model creates multiple replicas, ρi→j gets divided among instances of operator
j, hence creating variations on the arrival rate of downstream operators during
runtime. The operator processing requirements estimated by the model may
not be enough to handle the actual load during certain periods, so resulting in
large operator queues. To circumvent this issue we add a small safety margin,
the β factor, as mentioned in Section 2.2, which is a percentage increase in the
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Table 1. Operator properties in the application graphs.

Property Value Unit

Selectivity 0 - 20 %

Data Transformation Pattern 70 - 130 %

Reference CPU 1 - 26 CPU units

Reference Memory 1 - 27300000 bytes

Reference Data 38 - 2394000 bytes

application requirements estimated by the proposed model. A β too high results
in expensive over-provisioning. After multiple empirical evaluations, β was set
to 10% of each replica requirement.

Price model: The price of using resources is derived from Amazon AWS ser-
vices, considering the US East Virginia location. The CPU and memory prices
are computed based on the AWS Fargate Pricing4 under a 24/7 execution. Re-
garding the network, we consider a Direct Connection5 between the IoT site
and the AWS infrastructure. Direct Connections are offered under two options,
1 GB/s and 10 GB/s. As DSP applications generate large amounts of data, we
consider the 10 GB/s offer. The data sent from the IoT to AWS infrastructure
uses AWS IoT Core6. Connections between operators on the edge or on IoT
resources to the cloud use Private Links7. Amazon provides the values for CPU,
memory and network as, respectively, fraction of a vCPU, GB and Gbps, but
in our formulation the values for the same metrics are computed in CPU units
(100 ∗ num cores), bytes and Mbps. The values provided by Amazon converted
to the scale used in our formulation are presented in Table 2. As the environment
combines both public and private infrastructure, deployment costs are applied
only to MD and cloud resources, the network between these two, and the network
between these two and IoT resources. As IoT resources are on the same private
network infrastructure, the communication between IoT resources is free.

Evaluated approaches and metrics: Five different configurations of de-
ployment requests are submitted for each application. The reported values for
each application are averages of these five executions. Each deployment request
has a different placement for sources and sinks with sources always on IoT re-
sources and at least one sink in the cloud. The operator properties such as
selectivity and data transformation pattern vary across configurations.

The performance of DSP applications is usually measured considering two
main metrics, namely throughput, which is the processing rate, in bytes/s, of
all sinks in the application; and end-to-end latency, which is the average time
span from when a message is generated until it reaches a sink. The MILP model

4 https://aws.amazon.com/fargate/
5 https://aws.amazon.com/directconnect/
6 https://aws.amazon.com/iot-core/
7 https://aws.amazon.com/privatelink/
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Table 2. Computing and network costs.

Resource Unit Cost

CPU CPU/month $0.291456

Memory byte/month $3.2004e-09

Direct Link IoT to AWS 10GB link/Month $1620

Link IoT to AWS
Connection/Month $0.003456

KB $0.0000002

Communication IoT to cloud,
GB $7.2 + 0.01 per GB

IoT to MD, and MD to cloud

takes the throughput into account in the constraints, and the end-to-end latency
indirectly by optimizing the Aggregate Data Transfer Time.

4.2 Resolution Time versus Solution Quality

Here we evaluate how much the quality of a solution is sacrificed by reducing
the search space. The simulation, which runs for 220 seconds, considers 100 IoT
devices, a MD with 50 resources and a cloud with 50 resources. The throughput
is the same in all scenarios since it is guaranteed as a model constraint.

Figure 4 shows the end-to-end latency and deployment costs under CES and
CES-RS. There are some variations regarding the end-to-end latency both on
CES and on CES-RS. Since CES-RS aims to reduce the search space, it might
be counter intuitive to see cases where the resource selection with less options
obtains better end-to-end latency, such as in App3. However, the objective func-
tion considers both latency and execution costs as optimisation metrics. As CES
searches to strike a balance between cost and end-to-end latency, the average
deployment costs obtained with CES-RS for App 3 (Figure 4(b)) are higher.
This behavior happens because under the limited search space, CES-RS finds
sub-optimal solutions, where the best trade-off resulted in better end-to-end la-
tency. To do so, it needed to use more edge or cloud devices, which incurs higher
computational and network costs.

As CES considers the whole search space, it explores more options and yields
better results. Despite reduced search space CES-RS can produce very similar
results – in the worst case yielding an end-to-end latency ' 12% worse, and
deployment costs ' 12% higher. The resolution time (Figure 5), clearly shows
that CES considering the whole infrastructure faces scalability issues. Despite
producing results that sometimes are worse than those achieved under CES,
CES-RS can obtain a solution up to' 94% faster. CES-RS would yield even more
similar results on a larger infrastructure because their search space is limited by
the application size and requirements rather then by the infrastructure size.

4.3 Comparing CES-RS Against the State-of-the-Art

CES-RS is compared against two state-of-the-art approaches, namely Cloud-Only
and Taneja’s Cloud-Edge Placement (TCEP). Cloud-Only applies a random walk
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considering only cloud resources, and TCEP is the work proposed by Taneja et
al. [17], where all resources (IoT, MD and cloud) are sorted accordingly with
their capacities, and for each operator it s elects a resource from the middle of
the sorted list. This experiment was executed during 120 seconds and considered
400 IoT devices, 100 resources on the MD and 100 resources on the cloud.

Figure 6 shows the throughput and end-to-end latency for all solutions, with
averages for each application. Since CES-RS guarantees a maximum throughput
through a constraint, on the best case the other approaches would achieve the
same values, and this can be observed on App3, App4 and App5. But under
App1 and App2 Cloud-Only struggles because these applications perform a lot
of data replication, thus producing large volumes of data. The large volume of
messages generated by App1 and App2 has an even bigger effect on the end-
to-end latency for Cloud-Only. When compared to Cloud-Only, TCEP provided
better results, but still ' 80% worse than the results provided by CES-RS. CES-
RS achieves low values because, different from Cloud-Only and TCEP, it creates
several replicas, being able to better explore the IoT resources considering their
computational capacities and even further reducing the amount of data that is
send through the internet, facing less network congestion.
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Fig. 6. Throughput and latency under CES-RS and state-of-the-art solutions.

Figure 7 contains the costs results. Beyond better end-to-end latency, CES-
RS provides better computational costs. The reason that makes CES-RS achieve
computational costs at least ' 6% better than the traditional approaches is the
creation of replicas. The considered cost model, accounts for an IoT infrastruc-
ture without deployment costs, making such devices very attractive for deploy-
ment. Since IoT devices have constrained computational capacity, it is hard to
deploy on such devices. Due to CES, CES-RS breaks an operator into several
small replicas, allowing the use of IoT resources.

Regarding network costs, CES-RS provides cheaper deployments on most
cases except on App4 and App5. In these two applications, IoT resources support
the operators’ requirements without creating operator replicas allowing TCEP
to exploit it and result in fewer data transfers. TCEP has higher computational
costs because it cannot split operators into multiple replicas, thus resulting in
placing the whole operator on powerful and expensive computing resources lo-
cated on the cloud or a MD. When CES-RS is compared to TCEP, it achieves
a lower computational cost and a shorter end-to-end latency.
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Fig. 7. Computational and network costs under CES-RS and state-of-the-art solutions.
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5 Related Work

The problem of placing DSP dataflows onto heterogeneous resources has been
shown to be at least NP-Hard [2]. Moreover, most of the existing work neglects
the communication overhead [6], although it is relevant in geo-distributed in-
frastructure [9]. Likewise, the considered applications are often oversimplified,
ignoring operator patterns such as selectivity and data transformation [14].

Effort has been made on modeling the operator placement on cloud-edge in-
frastructure, including sub-optimal solutions [5,17], heuristic-based approaches [12,
19], while others focus on end-to-end latency neglecting throughput, application
deployment costs, and other performance metrics when estimating the oper-
ator placement [3, 4]. Existing work also explores Network Function Virtual-
ization (NFV) for placing IoT application service chains across fog infrastruc-
ture [11]. Solutions for profiling DSP operators are also available [1]. The present
work addresses operator placement and parallelism across cloud-edge infrastruc-
ture considering computing and communication constraints by modeling the sce-
nario as a MILP problem and offering a solution for reducing the search space.

6 Conclusion

This work presented CES, a MILP model for the operator placement and paral-
lelism of DSP applications that optimizes the end-to-end latency and deployment
costs. CES combines profiling information with the computed amount of data
that each operator should process whereby obtaining their processing require-
ments to handle the arriving load and achieve maximum throughput. The model
creates multiple lightweight replicas to offload operators from the cloud to the
the edge, thus obtaining lower end-to-end latency.

To overcome the issue of scalability with CES, we devise a resource selection
technique that reduces the number of resources evaluated during placement and
parallelization decisions. The proposed model coupled with the resource selec-
tion technique (i.e., CES-RS) is 94% faster than solving CES alone, it produces
solutions that are only 12% worse than those achieved under CES and per-
forms better than traditional and state-of-the-art approaches. As a future work
we intent to apply the proposed model along with its heuristic to a real-world
scenario.
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