
Multi-Objective Reinforcement Learning for Reconfiguring
Data Stream Analytics on Edge Computing

Alexandre da Silva Veith
Felipe Rodrigo de Souza
Marcos Dias de Assunção

Laurent Lefèvre
alexandre.veith@ens-lyon.fr

felipe-rodrigo.de-souza@ens-lyon.fr
marcos.dias.de.assuncao@ens-lyon.fr

laurent.lefevre@ens-lyon.fr
Univ. Lyon, EnsL, UCBL, CNRS, Inria, LIP, F-69342

Lyon, France

Julio Cesar Santos dos Anjos
Institute of Informatics - PPGC (UFRGS)

Porto Alegre/RS, Brazil
jcsanjos@inf.ufrgs.br

ABSTRACT
There is increasing demand for handling massive amounts of data
in a timely manner via Distributed Stream Processing (DSP). A DSP
application is often structured as a directed graph whose vertices
are operators that perform transformations over the incoming data
and edges representing the data streams between operators. DSP
applications are traditionally deployed on the Cloud in order to
explore the virtually unlimited number of resources. Edge comput-
ing has emerged as a suitable paradigm for executing parts of DSP
applications by offloading certain operators from the Cloud and
placing them close to where the data is generated, hence minimising
the overall time required to process data events (i.e., the end-to-
end latency). The operator reconfiguration consists of changing
the initial placement by reassigning operators to different devices
given target performance metrics. In this work, we model the op-
erator reconfiguration as a Reinforcement Learning (RL) problem
and define a multi-objective reward considering metrics regard-
ing operator reconfiguration, and infrastructure and application
improvement. Experimental results show that reconfiguration al-
gorithms that minimise only end-to-end processing latency can
have a substantial impact on WAN traffic and communication cost.
The results also demonstrate that when reconfiguring operators,
RL algorithms improve by over 50% the performance of the initial
placement provided by state-of-the-art approaches.

KEYWORDS
data analytics, edge computing, markov decision process, reinforce-
ment learning, multi-objective, monte carlo tree search
ACM Reference Format:
Alexandre da Silva Veith, Felipe Rodrigo de Souza, Marcos Dias de Assunção,
Laurent Lefèvre, and Julio Cesar Santos dos Anjos. 2019. Multi-Objective

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP ’19, August 05–08, 2019, Kyoto
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

Reinforcement Learning for Reconfiguring Data Stream Analytics on Edge
Computing. In ICPP ’19: International Conference on Parallel Processing,
August 05–08, 2019, Kyoto. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/1122445.1122456

1 INTRODUCTION
Nowadays the most diverse areas of society are pervaded by moni-
toring systems, sensors, and Internet of Things (IoT) devices that
generate unprecedented amounts of data. In order to extract valu-
able information from this data in a timely manner, data events
must be treated as they are generated using techniques such as
Distributed Stream Processing (DSP).

A DSP application is commonly structured as a directed graph
whose vertices are data sources, operators, and data sinks, whereas
edges represent the data streams between operators. The applica-
tion has one or multiple data sources that produce an input data
stream, operators that perform transformations over the stream-
ing data (e.g., filtering, aggregation, convolution) until the data
reaches a data sink [3]. DSP applications are traditionally deployed
on the Cloud in order to explore its virtually unlimited number of
resources. Although the Cloud deployment can achieve the scale
required by many applications, it incurs substantial processing de-
lay for services such as in IoT due to data transfer from sources
located at the edges of the Internet to the Cloud. More recently, Edge
computing emerged as a paradigm that leverages devices located at
the Internet edges (edge devices) for carrying out processing tasks.
These devices, though much more constrained than their Cloud
counterparts, have non-negligible processing capacity and are often
geographically closer to data sources.

For deploying DSP applications one needs to decide how to as-
sign operator tasks to available resources, a problem referred to
as operator placement and that is known to be NP-hard [1]. The
problem is exacerbated when considering hybrid cloud-edge infras-
tructure with highly heterogeneous resources. The non-negligible
yet limited processing capabilities of edge devices add another con-
straint to the problem. Several solutions in the literature tackle the
operator placement problem [12], some of which consider edge
computing [2, 4, 10, 15, 22]. Most of these solutions consider only
the initial assignment of operators to resources and optimise a sin-
gle performance metric such as end-to-end latency, throughout,

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

ICPP ’19, August 05–08, 2019, Kyoto Veith, et al.

or monetary cost. They ignore further optimisation during the ap-
plication life-cycle, and neither modify the initial assignment nor
reconfigure the already deployed application to deal with events
such as load changes, device failures, among other issues [3].

Reconfiguring DSP applications and deciding which operators to
migrate is a computationally hard problem, specially when consid-
ering multiple Quality of Service (QoS) metrics such as end-to-end
latency, traffic volume that uses WAN links, monetary cost, and the
overhead posed by saving the application state and moving opera-
tors to new resources. As the infrastructure and applications grow
larger, trying to devise a reconfiguration plan while optimising
multiple objectives can result in a large search space.

Reinforcement Learning (RL) and Monte-Carlo Tree Search
(MCTS) have been used to tackle problems with large numbers
of actions and states [6, 29], performing at human-level or better
in games such as Go. In the present work, we model the operator
migration problem as a Markov Decision Process (MDP) and inves-
tigate the use of RL and MCTS algorithms to create reconfiguration
plans that aim to improve multiple QoS metrics, including the end-
to-end latency of data stream events, monetary costs, data traffic
over WAN links, and reconfiguration overhead.

The contributions of this work are therefore to:

• Present a model for reconfiguring DSP applications in hetero-
geneous infrastructure considering a multi-objective prob-
lem optimisation (§2);
• Introduce a model for the problem using MDP and investi-
gate the use of RL algorithms (§3); and
• Evaluate the RL algorithms considering the multi-objective
solution and compare their performance against the initial
placement provided by traditional and state-of-the-art ap-
proaches (§4).

2 THE RECONFIGURATION PROBLEM
Distributed data stream processing applications are often long-
running and can experience variable load requirements that change
the working conditions of operators. Unlike the Cloud, edge re-
sources are often more constrained and less reliable, with higher
failure rates. To preserve the application performance within ac-
ceptable bounds it is important to adjust the initial placement and
conveniently reassign operators to available resources. Similarly to
solving the DSP operator placement problem, addressing reconfig-
uration consists of accommodating the application operators onto
the available resources in order to optimise one or multiple QoS
metrics. In this section we extend a model proposed in our previous
work [27] by addressing the reconfiguration of DSP applications
considering multiple QoS metrics. Table 1 summarises the notation
used throughout the paper.

The infrastructure is viewed as a graph N = (R,L) where R is
the union set of Cloud compute resources (Rc) and edge resources
(Re), and L is the set of logical links interconnecting the resources,
comprising WAN interconnections (Lw) and LAN links (Ll). A
computational resource is defined as a tuple rk = ⟨cpurk ,memr

k ⟩ ∈

R, where cpurk is the CPU capability in Millions of Instructions
per Second (MIPS) andmemr

k is the memory capability in bytes.
Similarly, a network link is a tuple k ↔ l = ⟨bdwk↔l , latk↔l ⟩ ∈ L,
where k ↔ l represents the interconnection between resource k

Table 1: Main notation adopted in the problem description.

Symbol Description

R Set of cloud ∪ edge resources
Rc , Re Sets of cloud and edge resources
L Set of all network links
Lw ,Ll Set of WAN and LAN links
N ,G Network and application graphs
k↔l A link connecting resources k and l
cpurk ,memr

k CPU and memory capacities of resource k
latk↔l ,bdwk↔l Latency and bandwidth of link k↔l
O Set of stream processing operators
E Set of event streams between operators
cpuoi ,memo

i CPU and memory req. of operator i
wsoi Length of operator i’s window in number of

events
ψo
i Selectivity of operator i
ωoi Data compression rate of operator i
e
ρ
i→j Event stream with probability ρ that an event

emitted by operator i will flow to j
λini , λ

out
i Input/output event rate of operator i

ςini , ς
out
i Input/output event size of operator i

stime ⟨i,k ⟩ Service time of operator i at resource k
ctime ⟨i,k ⟩ ⟨j,l ⟩ Communication time from operator i

at resource k to j at l
mem ⟨i,k ⟩ Overall memory required by operator

i when deployed at resource k
pi ,Lpi A graph path and its end-to-end latency
P The set of all paths in an application graph
µ ⟨i,k ⟩ The rate at which operator i

can process events at resource k
W Set of non-negative weights
1⟨i→j,k↔l ⟩ Indicates when the stream between operators

i and j has been assigned to the link
between resources k and l

1⟨i,k ⟩ Indicates whether operator i
is placed on resource k

AL,D,C,W QoS metrics of aggregate end-to-end latency,
reconfiguration overhead, monetary cost, and
WAN traffic

Cm ,Cc Monetary cost for events and connections
following the pricing policy

T icode ,T
i
state Time for transferring operator i’s

code and state
M Reconfiguration plan
M Set of QoS metrics

and l , bdwk↔l the bandwidth capability in bits per second (bps),
and latk↔l the latency in seconds. We consider the latency of a
resource k to itself (i.e., latk↔k) to be 0.

A DSP application is a graph G = (O, E) of operators O that
execute functions over the incoming data, and streams E of data
events flowing between operators. Each operator is a tuple oi =
⟨cpuoi ,memo

i ,ψ
o
i ,ω

o
i ,ws

o
i ⟩ ∈ O, where cpu

o
i is the CPU require-

ment in MIPS to handle an individual event,memo
i is the memory

Multi-Objective Reinforcement Learning for Reconfiguring Data Stream Analytics ICPP ’19, August 05–08, 2019, Kyoto

Resource 1
Operator 1

Message
Queue

Data transfer
service

Operator 2

Dispatching
service

Resource 2
Operator 3

Operator 4

Messages
Network

Figure 1: Example of four operators and their respective
queues placed on two resources.

requirement in bytes to load the operator,ψo
i is the ratio of number

of input events to output events (i.e., selectivity), ωoi is the ratio
of the size of input events to the size of output events (i.e., data
compression/expansion factor), andwsoi is the length of the opera-
tor’s window in number of events. The rate at which operator i can
process events at resource k is denoted by µ ⟨i,k ⟩ and is essentially
µ ⟨i,k ⟩ = cpu

r
k ÷ cpu

o
i . An operator can have one or multiple output

streams. An event stream e
ρ
i→j ∈ E connects operator i to j with a

probability ρ that an output event emitted by i will flow through
to j. If eρi→j is the only output stream of operator i , then ρ = 1.

The rate at which operator i produces events (λouti) is a product
of its input event rate λini and its selectivityψo

i . The output event
rate of a source operator depends on the number of measurements
that it takes from a sensor or another monitored device. Likewise,
we can recursively compute the average size ςini of events that
arrive at a downstream operator i and the size of events it emits
ςouti by considering the upstream operators’ event sizes and their
respective compression/expansion factors (i.e., ωoi).

A computational resource can host one or more operators. Oper-
ators within a same host communicate directly whereas inter-node
communication occurs via a communication service as depicted in
Figure 1. Events are handled in a First-Come, First-Served (FCFS)
fashion both by operators and the communication service that se-
rialises events to be sent to another host. Both operators and the
communication service follow an M/M/1 model for their queues
which allows for estimating the waiting and service times for com-
putation and communication. Moreover, a stateful operator can
have an impact on the computation time as it waits until it receives
a number of events before considering the window complete (wsoi).
The computation or service time stime ⟨i,k ⟩ of an operator i placed
on resource k is hence given by:

stime ⟨i,k ⟩ =
1

µ ⟨i,k ⟩ − λ
in
i
+
wsoi

λini
(1)

The communication time ctime ⟨i,k ⟩ ⟨j,l ⟩ for operator i placed on
a resource k to send an event to operator j on a resource l is:

ctime ⟨i,k ⟩ ⟨j,l ⟩ =
1(

bdwk↔l
ςouti

)
− λinj

+ latk↔l (2)

The function 1⟨i,k ⟩ indicates whether operator i is placed on
resource k whereas 1⟨i→j,k↔l ⟩ indicates when the stream between
operators i and j has been assigned to the link between resources k
and l . The goal is to find a reconfiguration planM : O → R, E →
L where operators are reassigned to computational resources and
streams to link(s) in a way that minimises M = {m0, ...,mk } QoS

metrics.We employ the Simple AdditiveWeightingmethod [31] that
computes a value, hereafter termed as the aggregate cost (aдд_cost),
over normalised metric values by assigning non-negative weights
W = {w0, ...,wk |w0 + ... +wk = 1} to the multiple metrics being
considered. The aggregate cost is therefore:

aдд_cost =
∑
z∈W

wz ×mz , (3)

As described further in Section 2.2, we consider four QoS metrics,
namely the aggregate end-to-end latency, WAN traffic, monetary
cost, and the reconfiguration overhead

2.1 Constraints
Edge devices are limited in terms of memory, computing, and com-
munication capabilities. A reconfiguration mappingM needs to
respect the following constraints:

λini < µ ⟨i,k ⟩ ∀i ∈ O,∀k ∈ R|1⟨i,k ⟩ = 1 (4)

λouti <
(bdwk↔l

ςouti

)
∀i ∈ O,∀k↔l ∈ L|1⟨i,k ⟩ = 1 (5)

The CPU and memory requirements of operators on each host
are ensured by constraints 6 and 7:∑

i ∈O

1⟨i,k ⟩ × λ
in
i ≤ cpurk ∀k ∈ R (6)

∑
i ∈O

1⟨i,k ⟩ × (memo
i +ws

o
i × ς

in
i) ≤ memr

k ∀k ∈ R (7)

Data requirements of streams placed on links are guaranteed by:∑
si→j ∈E

k↔l ∈L

1⟨i→j,k↔l ⟩ × ς
out
i ≤ bwdk↔l ∀k ↔ l ∈ L (8)

Constraints 9 and 10 ensure that an operator is not placed on
more than one resource and that a stream is not placed on more
than a network link respectively:∑

k ∈R

1⟨i,k ⟩ = 1 ∀i ∈ O (9)∑
k↔l ∈L

1⟨i→j,k↔l ⟩ = 1 ∀si→j ∈ E (10)

2.2 Quality of Service Metrics
As DSP applications must handle incoming data events under short
delays, the goal of the operator reconfiguration is to minimise the
response time while reducing one or multiple metrics including the
monetary cost, the WAN traffic and the reconfiguration overhead.

2.2.1 Aggregate End-to-End Application Latency (End-to-End La-
tency). A path in a DSP application graph is a sequence of operators
from a source to a sink. A path pi of length n is a sequence of n
operators and n − 1 streams, starting at a source and ending at a
sink:

pi = o0,o1, . . . ,ok ,ok+1, . . . ,on−1,on (11)
where o0 is a source and on is a sink. The set of all possible paths
in the application graph is denoted by P. The end-to-end latency

ICPP ’19, August 05–08, 2019, Kyoto Veith, et al.

of a path is the sum of the computation time of all operators along
the path and the communication time required to stream events on
the path. More formally, the end-to-end latency of path pi , denoted
by Lpi , is:

Lpi =
∑

j ∈pi ,k ∈R

1⟨j,k ⟩ × stime ⟨j,k ⟩

+
∑
l ∈R

1⟨j→j+1,k↔l ⟩ × ctime ⟨j,k ⟩ ⟨j+1,l ⟩
(12)

The aggregate end-to-end latency AL is therefore given by:

AL =
∑
pi ∈P

Lpi (13)

2.2.2 WAN Traffic. WAN communication usually operates through
the Internet where the lack of network guarantees and instability
might introduce delay and delay-jitter when transferring data be-
tween geographically distributed sites. WAN traffic accumulates
the sizes of events that cross the WAN interconnections Lw :

W =
∑

si→j ∈E

k↔l ∈Lw

1⟨i→j,k↔l ⟩ × ς
out
i (14)

2.2.3 Monetary Cost of Communication. The monetary cost of
event exchange is based on the main elements1 of IoT services
of two major Cloud-edge players, namely Amazon IoT Core2 and
Microsoft Azure IoT Hub3. The price comprises the cost of the
number of connections and that of exchanging events. The price
for exchanging events is calculated as the number of events that
reach the cloud from the edge and vice-versa.

The first part of the cost represents events arriving from the
edge to the cloud or vice-versa. The number of events exchanged
between edge Re and cloud Rc resources is given by:

Cm =
∑

i ∈O, j ∈O
k ∈Re ,l ∈Rc

(
1⟨i→j,k↔l ⟩ × 1⟨j,l ⟩ × 1⟨i,k ⟩ × λ

in
j +

1⟨j→i,k↔l ⟩ × 1⟨i,k ⟩ × 1⟨j,l ⟩ × λ
out
j

) (15)

The number of connections between edge and cloud is:

Cc =
∑

i ∈O, j ∈O
k ∈Re ,l ∈Rc

(
1⟨i→j,k↔l ⟩ × 1⟨j,l ⟩ × 1⟨i,k ⟩+

1⟨j→i,k↔l ⟩ × 1⟨i,k ⟩ × 1⟨j,l ⟩
) (16)

Hence the total cost is given by:

C = Cc × price_connections +Cm × price_events (17)

where price_connections and price_events are a provider’s prices
for connections and events, respectively.

1For simplicity, we consider the two main costs: connections and events
2AWS IoT Core - https://aws.amazon.com/iot-core/pricing/
3Microsoft Azure IoT Hub - https://azure.microsoft.com/en-us/pricing/details/iot-hub/

2.2.4 Reconfiguration Overhead. Reconfiguring an application con-
sists of migrating operators across compute resources to optimise
the QoS metrics described above [3]. Reconfiguration here is a
pause-and-resume approach which involves the following opera-
tions. First, the DSP system terminates the operator running on
the current location and pauses its upstream operators to avoid
emitting data towards the operator being reconfigured. Then, the
operator is migrated to the new location along with its internal
state in case it is stateful. Finally, the DSP system starts the new
operator and resumes the application execution.

Formally, the reconfiguration overhead consists of the total
downtime incurred by migrating operator code (T icode) and state
(T istate), whereT

i
code andT

i
state refer to the time required to move

thememo
i and the wsoi of operator i , respectively. The migration

time comprises the transfer time using an available route in the
infrastructure, the sum of the link data transfers considering the
bandwidth capability and their latencies. Since operator migrations
happen in parallel, the total downtime is the longest migration time,
denoted by:

D = max
i ∈O
k ∈R

[1⟨i,k ⟩ × (T
i
code +T

i
state)] (18)

3 REINFORCEMENT LEARNING FOR
OPERATOR RECONFIGURATION

The application reconfiguration is structured as a Markov Decision
Process (MDP) that represents an agent’s decision-making process
(i.e., DSP scheduler) when performing the operator reassignment.
The MDPmaintains possible states of a simulated environment that
uses the model described in Section 2 for evaluating the impact of
operator migrations. The agent employs MCTS approaches to keep
track of state transitions when evaluating the DSP application using
the simulated environment and by applying algorithms described in
this section to balance exploration of new solutions and exploitation
of good and well-known ones.

3.1 Markov Decision Process
The MDP provides a decision-making framework where an agent
makes decisions by interacting with a simulated environment over
a number of steps. The MDP often comprises a set of environment
states S including the initial state s0 and a terminal state s |S |−1,
where each state s has a set of possible actions A(s) and a reward
function R(s). At a non-terminal state, the agent picks an available
action and interacts with the simulated environment to determine
the state and reward for the next step. For instance, at step t in
Figure 2 the system is at state st and transitions to st+1. Such
transition corresponds to performing a possible action at at st ; and
receiving a reward rt by evaluating the transition to state st+1.

For building the set of possible environment states for the re-
configuration, we first create a deployment sequence D, which
consists of a sorted list of operators that need to be reassigned to
resources. The sequence is built by using breadth-first search [18]
to traverse the application graph, where the system gives pri-
ority to upstream operators. A state st at time step t is a tuple
st = ⟨Mt ,Rt ,Lt ,dt , ct ⟩ ∈ S, whereMt contains a mapping of
operator/stream onto resource/link(s), Rt and Lt consist of the

Multi-Objective Reinforcement Learning for Reconfiguring Data Stream Analytics ICPP ’19, August 05–08, 2019, Kyoto

at-1

Edge devices

Cloud

Internet

State st-1

r0 1

2

r1 3

4

r2

r3

at

Edge devices

Cloud

Internet

State st

r0
12 r1 3

4

r2

r3

Edge devices

Cloud

Internet

State st+1

r0
12 r1

3

4r2

r3

Migration

Migration

...
rt-1 rt

...

LAN LAN LAN

Figure 2: Example of MDP-based operator reconfiguration.

residual capacities of resources and links respectively, dt is an index
to the operator deployment sequence D, and ct ∈ {0, 1} indicates
whether the mappingMt violates a constraint (Section 2.1).

An action a under state st consists in assigning the operator
referred to by dt (i.e., oi) to a resource a such that 1⟨i,a ⟩ = 1. Each
possible action can consist in maintaining the current mapping
of operator oi or migrating it to another resource. The number
of actions is equal to the number of compute resources Rt with
enough memory to meet operator oi requirements, i.e.,A(s) = {a ∈
Rt |memr

a ≥ memo
i }.

A transition from state st to st+1 also changes the index to the
deployment sequence from dt to dt+1 where st is a non-terminal
state and dt < |D| and ct , 1. In Figure 2, which depicts the
MDP-simulated deployment of the example given in Figure 1, the
state st has index dt pointing to operator 2, whereas state st+1
provides dt+1 referring to operator 3. In this example, action at is
taken to reassign operator 3 to r3. After taking action at at state
st , the system yields a new state st+1. If the new state maintains
the current mapping, the agent copies all the information from st
and updates dt+1 to consider the next operator in sequence D. If
the operator referred to by dt is migrated, the agent evaluates the
expected aдд_cost of the new state using the model of Section 2.

When simulating the operator migration while transitioning
from state st to state st+1, the agent updates the operator/stream
mappingMt+1, the residual capacities of resources Rt+1 and links
Lt+1, and whether constraints are violated ct+1. Using the location
of the migrated operator and the locations of upstream operators,
the agent reassesses the stream mapping as it directly effects the
arrival rate (i.e., the network bandwidth) of the migrated operator.
Since there can be multiple paths between two compute resources,
the agent picks the one with the most residual bandwidth to support
the volume of events emitted by the upstream operator and with
the shortest latency. If the paths violate a constraint, the agent sets
ct+1 to 1 and skips the rest of the evaluation altogether. Otherwise,
the agent continues and evaluates the operator mapping, where it
calculates the input event rate in the target computational resource
considering its upstream operators to verify if the resource can
support the memory and CPU requirements, setting ct+1 to 1 if any
constraint is violated. The simulation then returns eitheraдд_cost =
−1 indicating constraint violations, or the aдд_cost obtained in the
simulation. At last, the agent updates the residual capacities of
compute resources Rt+1 and links Lt+1.

The reward R(st+1) of a state st+1 is given by the difference
between theaдд_costs0 of the original mapping and theaдд_costst+1
of the state st+1. In other words:

R(s) = aдд_costs0 − aдд_costst+1 (19)

By solving the MDP one obtains a policy π (s) : s ∈ S 7→ a ∈
A(s)with themigrations needed to reconfigure the operator deploy-
ment. An optimal policy is a solution that maximises the expected
reward.

3.2 Reinforcement Learning Algorithms
Known RL approaches to approximate the optimal state transition
rewards in MDP problems rely on the Monte-Carlo Tree Search
(MCTS) algorithm. MCTS, depicted in Algorithm 1, is a search
mechanism consisting of running a number of simulations to build
a search tree with the results [6]. Each node n(s) of the search tree
T represents a state s that has been explored during simulation. A
node maintains a count N (s) of the number of visits for the state,
an action valueQ(s,a) for each action a ∈ A(s) and a count N (s,a)
with the number of times the action was chosen.

Within a given number of iterations, MCTS builds the decision
tree one node at a time, starting with the root node with the state
given by the current deployment. At each iteration, the algorithm
takes a set of actions resulting in an episode whose evaluation will
force the creation of a new node. The episode comprises a set of
tuples ⟨s,a, r , s ′⟩ where s is the evaluated state, a is the action to
be taken, r is the reward given by R(s), and s ′ is the state resulting
from taking action a in state s .

In the context of operator reconfiguration, the episode creation
(lines 8–19) begins at the root node and iterates over the deploy-
ment sequence D. At each iteration, the algorithm picks a possible
action from A(s) that either maintains the placement or migrates
the operator. Herein a possible action evaluates existing nodes and
ignores actions that would result in assigning operators to con-
strained nodes. When a state node exists in the search tree, a tree
policy is employed to evaluate actions; otherwise a default policy
is used. The simplest combination of policies comprises greedy se-
lection maxaQ(s,a) as tree policy and random choice of actions
as default policy. After selecting an action, the algorithm evalu-
ates it using the simulated environment and appends the resulting
state to the episode, along with the reward and the action itself
(lines 16–17). If the new state is invalid, the algorithm considers
it as terminal. Otherwise, the new state is evaluated in the next
iteration (line 18) and this process is repeated until the end of the
deployment sequence.

The first state observed in the tuples of the episode that does
not contain a node in the decision tree (line 21), will result in
the creation of a new node in the tree (line 22). The action value
Q(s,a) and the counter with the number of times the action was
chosen N (s,a) are initialised with 0 (lines 23–24). After expanding
the decision tree, the value obtained in the terminal state of the
episode (line 26) will be used to update the Q(s,a) and N (s,a) in
the traversal nodes towards the root node (lines 27–29). The update
method varies depending on the variant of the MCTS algorithm –
e.g., MCTS-UCT and TDTS-Sarsa(λ).

ICPP ’19, August 05–08, 2019, Kyoto Veith, et al.

Algorithm 1: The MCTS algorithm.
1 Function MCTS(s0)
2 T ← n(s0)

3 while within computational budget do
4 episode ←GenerateEpisode (T , s0)
5 ExpandTree (T , episode)
6 Backup (T , episode)
7 return n(s) ∈ T with the best reward
8 Function GenerateEpisode(T , s0)
9 episode ← {}

10 s ← s0
11 while s is not terminal do
12 if n(s) ∈ T then
13 a ←TreePolicy (s)
14 else
15 a ←DefaultPolicy (s)
16 (s,a, r , s ′) ←SimulateTransition (s,a)
17 append (s,a, r , s ′) to episode
18 s ← s ′

19 return episode

20 Procedure ExpandTree(T , episode)
21 (s,a, r , s ′) ← first tuple where n(s ′) < T ∧ s ′ ∈ episode
22 T ← T ∪ n(s ′)

23 Q(s ′,a) ← 0
24 N (s ′,a) ← 0
25 Procedure Backup(T , episode)
26 R ← r from episode(|episode | − 1)
27 for i = Length(episode) down to 1 do
28 (s,a, r , s ′) ← episode(i)

29 UpdateTreeValues (T , s,R)

The MCTS algorithm, in its basic form, can take many steps
to converge to a good solution, thus making it costly. This is
mostly due to the effect that the large search space has over
the action-values. Another issue is the inaccurate estimation of
the action-values; MCTS accounts only for the final outcome to
update the Q(s,a) while some methods sample predicted future
states and bootstrap to adjust the estimations. To solve the basic
MCTS drawbacks, variants of the algorithm were proposed. For
instance, the algorithms MCTS-UCT and TDTS-Sarsa(λ) change the
MCTS behaviour to obtain the action-valueQ(s,a). Each algorithm
mainly varies the TreePolicy and Backup – different approaches
toUpdateTreeValues – methods by employing Upper Confidence
Bound (UCB) and/or Temporal-Difference Tree Search (TDTS).

3.2.1 MCTS-UCT. MCTSwith Upper Confidence Bounds for Trees
(UCT) is an algorithm that applies UCB in the tree policy to avoid the
inefficiencies of the greedy approach that might stick to a limited
number of actions after a few poor choices. The UCT algorithm
uses an optimistic approach in the face of uncertainty by giving a
bonus that represents the uncertainty in the Q(s,a) value, hence

aiming to explore actions less frequently visited which can favour
potential action-values.

The UCT algorithm handles each state of the decision tree as a
multi-armed bandit, in which each action available to the opera-
tor corresponds to an arm of the bandit. The tree policy chooses
a∗ action using UCB1 algorithm [24] to maximise a UCT on the
value of actions Q(s,a) to balance the exploitation of known good
reconfiguration mappings evaluating Q(s,a) and the exploration
of untried reconfigurations. The constant C is the factor used to
control the impact of the exploration on node selection:

UCT (s,a) = Q(s,a) +C

√
2lnN (s)
N (s,a)

(20)

a∗ =maxaQ(s,a) (21)

In our version of MCTS-UCT, De f aultPolicy uses a random
walk approach to choose actions. In theUCT (s,a) function of the
TreePolicy the exploitation is replaced by Q (s,a)

N (s,a) as it is the most
common approach when using MCTS-UCT. The Backup the algo-
rithm increments the number of node visits N (s,a) and adds the
reward from the last tuple to Q(s,a).

3.2.2 TDTS-Sarsa(λ). A combination of Sarsa(λ) and UCT [29],
TDTS-Sarsa(λ) uses the same De f aultPolicy and TreePolicy of
MCTS-UCT, but with a different Backup method. MCTS-UCT back-
propagates the reward of the episode’s last tuple and updates the
action-values Q(s,a). TDTS-Sarsa(λ)’s Backup backtracks the re-
ward of the last tuple of the episode and iterates the episode ap-
plying rates of discount reward and eligibility trace decay to after
states Q(s′,a′) and updates the Q(s,a).

4 PERFORMANCE EVALUATION
This section describes the experimental setup, the performance
metrics, and the obtained results.

4.1 Experimental Setup
A built-in-house framework atop OMNET++ [27] is used to model
and simulate DSP applications. We resort to simulation as it pro-
vides a controllable and repeatable environment.

The edge devices are modelled as Raspberry PI’s 2 (RPi) (i.e.,
4,74 MIPS at 1 GHz and 1 GB of RAM), and the cloud as AMD
RYZEN 7 1800x (i.e., 304,51 MIPS4 at 3.6 GHz and 1 TB of memory).
The infrastructure comprises two edge sites (i.e., cloudlets) with 20
RPi’s each and a Cloud with 2 servers. A gateway interfaces each
edge site’s LAN and the external WAN [7] (the Internet). The LAN
latency is uniformly distributed between 0.015 and 0.8 ms with
a bandwidth of 100 Mbps. The WAN latency is drawn uniformly
between 65 and 85 ms, and bandwidth of 1 Gbps [11].

Eleven application graphs with single and multiple data paths
are considered. The graphs were crafted using a Python library5
and their orders are based on the size of Realtime IoT Benchmark
(RIoTBench) topologies [23], which are representative of today’s
data stream processing applications. The number of stateful oper-
ators corresponds to 20% of the whole application, also based on
4https://reddit.com/r/BOINC/comments/5xog5v/boinc_performance_on_amd_ryzen
5https://gist.github.com/bwbaugh/4602818

Multi-Objective Reinforcement Learning for Reconfiguring Data Stream Analytics ICPP ’19, August 05–08, 2019, Kyoto

RIoTBench topologies. The operator behaviours vary with their
parameters uniformly drawn from the values shown in Table 2. The
sources and sinks are placed on edge sites except for the sink on
the critical path, which is hosted on the cloud. This is the typical
behaviour of IoT applications that collect data from sensors located
on the edge of the Internet and have to provide response to nearby
actuators, whereas part of the processing is performed on the cloud.

Table 2: Operator parameters in the application graphs.

Parameter Value Unit

cpu 1000-10000 Instructions per second
Data compression rate 10-100 %

mem 100-7500 bytes
Input event size 100-2500 bits/second

Selectivity 10-100 %
Input event rate 1000-10000 Number of messages
ws (window size) 1-100 Number of messages

Performance Metrics: As explained earlier, the following QoS
requirements are considered as performance metrics:

• Aggregate end-to-end latency, which is the end-to-end
latency in seconds from the time events are generated to the
time they are processed by the sinks;
• Monetary cost that represents the cost in dollars by using
the Microsoft Azure IoT Hub Pricing policy;
• WAN traffic which corresponds the amount of bytes trans-
ferred inter cloudlets, or/and among cloudlets and cloud
communication; and
• Reconfiguration overhead which is the maximum time
(seconds) to reassign operators and states across the infras-
tructure.

One iteration of a Monitoring, Analysis, Planning and Execu-
tion (MAPE) loop is considered for operator reconfiguration. The
DSP scheduler monitors the application performance metrics while
running the application under the placement provided by a de-
ployment algorithm (described next). The QoS requirements are
analysed when the execution reaches 300 seconds or all applica-
tion paths have 500 messages; whichever comes last. Based on the
analysis, the scheduler plans the operator reconfiguration using
the RL algorithms with a computational budget of 10,000 iterations.
At last, the scheduler executes the reconfiguration plan.

The RL algorithms are compared against a traditional deploy-
ment approach (cloud-only) and Taneja’s Cloud-Edge Placement
(TCEP) [25] from the state-of-the-art that performs cloud-edge
placement. Cloud-only deploys all operators on the cloud, apart
from data source and data sink locations. TCEP iterates a vector
containing the application operators, and for each operator the al-
gorithm ranks the computational resources by CPU, gets the host of
the middle of the rank, and evaluates CPU, memory, and bandwidth
constraints to obtain the operator placement. If there exists any
constraint the operator is assigned to the cloud.

TCEP

Figure 3: Cloud-only and TCEP, with end-to-end latency
weight = 1.

4.2 Performance Evaluation
The performance evaluation was conducted by analysing the RL
algorithms under three scenarios. First, the RL algorithms are com-
pared against traditional and state-of-the-art solutions that are
oblivious to multi-objective optimisation. Second, the impact of
the reconfiguration overhead is measured. Finally, we examine the
behaviour of RL algorithms when applying multiple weights to the
QoS metrics.

4.2.1 RL algorithms versus traditional and state-of-the-art deploy-
ment: Figure 3 summarises the results for application reconfigu-
ration while optimising the end-to-end latency only (i.e., latency
weight equal to 1). The presented values consist of weighted means
where weights are the number of produced messages in each of
the eleven evaluated applications normalised by the maximum ob-
served value for all solutions (cloud-only, TCEP and RL algorithms).
The left-hand graph in Figure 3 demonstrates that RL algorithms
can achieve ≈ 20% better end-to-end latency, and reduce the WAN
traffic by over 50% and the monetary cost by 15%. The downside of
employing end-to-end latency as single-criterion optimisation is
the lack of monetary cost and WAN traffic guarantees. The right-
hand graph in Figure 3 shows the aforementioned drawback where
the RL algorithms increase the monetary cost by over 15%.

The multi-objective approach provides a holistic view of the
environment and allows for optimising multiple metrics simulta-
neously while avoiding unwanted spikes of monetary cost and
WAN traffic. Figure 4 summarises the values when applying equal
weights to end-to-end latency, WAN traffic and monetary cost. The
results show that the RL algorithms outperform the state-of-the-art
and traditional approach in terms of end-to-end latency and bring
guarantees to WAN traffic and monetary cost when addressing
the problem as a multi-objective optimisation. For instance, the
RL algorithms reduce the end-to-end latency by 15% on average
while bringing the monetary cost down by 70% and reducing the
communication by 65%.

4.2.2 Overhead of the reconfiguration decisions: Although the
WAN traffic, end-to-end latency, and monetary cost have a non-
negligible impact on the quality of operator placement, it is impor-
tant to consider the overhead that a reconfiguration decision might
incur. The reconfiguration overhead comprises the time required

ICPP ’19, August 05–08, 2019, Kyoto Veith, et al.

TCEP

Figure 4: Cloud-only and TCEP with weights for end-to-end
latency, monetary cost and WAN traffic equal to 0.33.

Figure 5: Reconfiguration overhead ofCloud-only andTCEP.
On the left-hand graph the end-to-end latency weight is 1;
the right-hand graph shows results of equal weights to end-
to-end latency, monetary cost and WAN traffic.

to move operator states and code from one computational resource
to another and restart the operator at the destination resource. Us-
ing a pause-and-resume approach, the system will be paused until
the reconfiguration finishes while operators located upstream to
those being migrated will store the events being ingested by the
application data sources. For instance, if the system takes one sec-
ond for reconfiguring an application, and a data source generates
10,000 events per second, then these events will be held by upstream
operators resulting in long synchronisation overhead that can be
unacceptable for time-sensitive applications.

Figure 5 presents the reconfiguration overhead for the weighted
scenarios of Section 4.2.1. The RL algorithms achieved lower recon-
figuration overhead in over 40% when starting from the cloud-only
approach. As TCEP handles the infrastructure as a single set of
computational resources (i.e., the computational resources are con-
sidered to be in the same local area) achieving a disperse deployment
as presented by Veith et al. [27]. On the one hand, TCEP operator
deployment needs to migrate operators from multiple areas (be-
tween edge sites and among edge sites and the cloud), and on the
other hand, starting with cloud-only, the RL algorithms have to
move operators just from the cloud to the edge.

End-to-end
Latency

Monetary
Cost

Reconfiguration
Overhead

WAN
Traffic

0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1

End-to-end
Latency

Monetary
Cost

Reconfiguration
Overhead

WAN
Traffic

0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1

TDTS-SARSA()
MCTS-UCT

Figure 6: Cloud-only and TCEP with 0.25 weight for end-to-
end latency,monetary cost,WAN traffic and reconfiguration
overhead.

4.2.3 RL algorithm behaviours when applying multiple weights to
QoS metrics: A set of experiments is conducted covering various
combinations of metric weights to investigate how the RL algo-
rithms react under multiple optimisation criteria. The metric values
were obtained from the same weighted average of Section 4.2.1, but
normalised by the maximum observed values from all experiments
(Section 4.2.1 and 4.2.3). Hereafter, the term base values is used as a
reference to the end-to-end latency, monetary cost and WAN traffic
obtained from TCEP and Cloud-only operator deployments. For the
reconfiguration overhead we consider the maximum value from RL
algorithms when oblivious to this metric. Figure 6 summarises the
results of equal weight of 0.25 to all metrics when starting with a
deployment using either cloud-only or TCEP. The RL algorithms
reduce in over 45% the end-to-end latency, monetary cost and WAN
traffic while achieving ≈ 30% less reconfiguration overhead against
the base values.

As DSP applications are time-sensitive, we evaluate a scenario
focusing on improving the end-to-end latency along with the other
QoS metrics. Figure 7 introduces the results with a weight of 0.7 to
end-to-end latency and 0.1 to the other metrics. The set of weights
allows for reducing the reconfiguration overhead by over 30%, the
end-to-end latency by over 50%, the WAN traffic by more than 50%
and the monetary cost in ≈ 45% compared to the base values. The
current set of weights significantly reduces the reconfiguration
overhead and slightly improves the end-to-end latency at the cost
of raising the WAN traffic and the monetary cost when compared
to the scenario that assigns equal weights to all QoS metrics. The
high priority given to the end-to-end latency, the Equation 19,
and the optimistic approach in the face of uncertainty of UCT-
based algorithms – TDTS-Sarsa(λ) and MCTS-UCT – led to explore
actions that improve the reconfiguration overhead.

The previous scenarios provided some insights regarding the
trade-off between end-to-end latency and the other metrics. The
priority assigned to the end-to-end latency did not converge to a
significant improvement whereas assigning equal weights of 0.25
achieves certain stability that does not vary when changing end-
to-end latency to 0.7. However, focusing only on the end-to-end
latency introduces a degradation of WAN traffic and monetary cost
metric. Hence, we merged the two previous scenarios by giving
0.4 importance to the end-to-end end-to-end latency and 0.2 to
WAN traffic, monetary cost, and reconfiguration overhead. Figure 8

Multi-Objective Reinforcement Learning for Reconfiguring Data Stream Analytics ICPP ’19, August 05–08, 2019, Kyoto

End-to-end
Latency

Monetary
Cost

Reconfiguration
Overhead

WAN
Traffic

0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1

End-to-end
Latency

Monetary
Cost

Reconfiguration
Overhead

WAN
Traffic

0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1

TDTS-SARSA()
MCTS-UCT

Figure 7: Cloud-only and TCEPwithweights 0.7, 0.1, 0.1, and
0.1 for end-to-end latency, monetary cost, WAN traffic and
reconfiguration overhead, respectively.

End-to-end
Latency

Monetary
Cost

Reconfiguration
Overhead

WAN
Traffic

0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1

End-to-end
Latency

Monetary
Cost

Reconfiguration
Overhead

WAN
Traffic

0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1

TDTS-SARSA()
MCTS-UCT

Figure 8: Cloud-only and TCEPwithweights 0.4, 0.2, 0.2, and
0.2 for end-to-end latency, monetary cost, WAN traffic and
reconfiguration overhead, respectively.

shows that as expected the end-to-end latency remains stable and
the weights assigned to the QoS metrics allow for keeping the
monetary cost down while reducing the reconfiguration overhead
and the WAN traffic.

One can observe that the set of metric weights as well as the
initial placement (cloud-only or TCEP) dictate the performance of
the RL algorithms. In this sense, the best configuration was achieved
by employing 0.4 to end-to-end latency and splitting 0.6 equally
among the other QoS metrics. Also, both MCTS approaches had
a similar behaviour as they are UCT-based and hence avoid the
inefficiency of the greedy approach that may stick to a limited
number of actions. In addition, TDTS had a slight degradation
of performance when compared to the basic MCTS method. This
happens because the algorithm SARSA(λ) requires a fine tune of
its parameters (reward discount and eligibility trace decay rates)
as presented in Section 3.2.2. Overall, the proposed MDP model
and the multi-objective reward brought a holistic view to the RL
algorithms allowing for outperforming the state-of-the-art and the
traditional approach.

5 RELATEDWORK
Emerging IoT and monitoring services require the use of DSP appli-
cations for handling events under short delays and to enable quick

decision making. An example consists of identifying the periodic-
ity in traffic patterns using taxi GPS traces and leverage this for
managing traffic lights efficiently and prevent traffic jams [8].

DSP applications are often fully deployed on the Cloud to take
advantage of the virtually unlimited number of resources that it
provides [20, 26]. However, data sources of emerging services such
as in IoT are commonly geographically distant from the cloud,
located at the edges of the Internet. The time to transfer events
from data sources to the Cloud can become an issue to time-sensitive
applications [10]. Recent work leverages the edges of the Internet
or mobile devices for hosting parts of an application to minimise the
end-to-end application latency or meet other QoS requirements [2,
4, 15, 22].

The process of assigning DSP operators to resources of a het-
erogeneous infrastructure (i.e., operator placement) is challenging
and has proven to be NP-Hard [1]. Some approaches simplify the
problemwhilst neglecting requirements such as communication [4],
or ignoring certain operator behaviours and needs [22]. Usually,
solutions address the placement as a single-objective optimisation
problem while focusing mostly on end-to-end latency and therefore
avoiding other important aspects such asWAN traffic and monetary
cost [25].

The literature proposes solutions that address the problem as
a multi-objective optimisation. For instance, Cardellini et al. [3]
handle the DSP application deployment and replication by propos-
ing a deterministic approach with a linear programming model
that addresses metrics such as end-to-end latency, monetary cost
and the reconfiguration overhead. Our work, on the other hand,
considers a stochastic scenario with additional optimisation cri-
teria and realistic pricing schemes. Moreover, given the benefits
of applying RL to problems with large search spaces, such as the
game of Go [6], previous work also applied RL to scheduling tasks
to Edge computing [14]. RL has been used for solving deterministic
and stochastic scheduling problems [14, 16] and elasticity of DSP
applications. Vengerov et al. [28] show an RL framework for per-
forming adaptive reconfiguration of dynamic resource allocations
with Fuzzy. The decisions are taken in unknown stochastic dynamic
environments assuming that the state space can be mitigated with
time intervals much larger than the resource transfer time.

During the life-cycle of a DSP application, variations on the
workload or infrastructure failures raise the need for reconfigura-
tion. Liu et al. [13] propose a single-objective (end-to-end latency)
model to reconfigure DSP applications based on collected statistics
and Deep Neural Networks. Russo et al. [21] offer a multi-objective
optimisation (monetary cost and QoS violations) Q-Learning model
for reconfiguration. Panerati et al. [17] propose an autonomic man-
ager using reinforcement learning algorithms and Q-learning ap-
plied to sensors and actuators to provide self-optimisation con-
sidering a multi-objective approach. Heinze et al. [9] proposed a
multi-objective reconfiguration model based on the bin packing
heuristic that explores the trade-off between monetary cost and
end-to-end latency to predict and adapt the application to work-
load variations. The holistic view provided by a multi-objective
approach for solving the operator reconfiguration problem fosters
the use of RL [5, 19, 30].

Our solution embraces the multi-objective problem covering
common metrics such as end-to-end latency and monetary cost,

ICPP ’19, August 05–08, 2019, Kyoto Veith, et al.

and metrics neglected by other solutions, namely WAN traffic and
reconfiguration overhead. Moreover, we use queueing theory and a
realistic IoT pricing policy to model the DSP application behaviour
and use it for simulation and learning using MCTS.

6 CONCLUSION & FUTUREWORK
In this paper, we modelled the problem of reconfiguring DSP appli-
cations onto heterogeneous computational and network resources
by considering multiple QoS metrics. We introduced anMDPmodel
and employed MCTS-UCT and TDTS-Sarsa(λ), which are RL algo-
rithms, to devise application reconfiguration plans. The RL algo-
rithms tackled a multi-objective problem optimisation by consid-
ering end-to-end latency, WAN traffic, monetary cost, and recon-
figuration overhead. The evaluated scenario covered multiple and
complex applications varying the number of operators and their
behaviours (selectivity, data compression and expansion factor,
window size and processing requirements) employed to a cloud-
edge infrastructure with heterogeneous computational resources
(Raspberry Pi’s and cloud servers).

The behaviour of RL algorithms was evaluated and compared
against state-of-the-art solutions. The results show that our MDP
model and multi-objective reward enable RL algorithms to have a
holistic view of the operator reconfiguration and allow for reducing
all target QoS metrics by over 50%.

As future work, we aim at building on the presented solutions
and results and focus on minimising the search space by reducing
the number of actions evaluated at each state. We aim at using
heuristics that reduce the number of resources and operators used
to build the set of possible actions.

ACKNOWLEDGMENTS
This work was performed within the framework of the LABEX
MILYON (ANR-10-LABX-0070) of Universite de Lyon, within the
program “Investissements d’Avenir” (ANR-11-IDEX-0007).

REFERENCES
[1] Anne Benoit, Alexandru Dobrila, Jean-Marc Nicod, and Laurent Philippe. 2013.

Scheduling Linear Chain Streaming Applications on Heterogeneous Systems
with Failures. Future Gener. Comput. Syst. 29, 5 (July 2013), 1140–1151.

[2] Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, and Matteo Nardelli.
2015. Distributed QoS-aware Scheduling in Storm. In 9th ACM Int. Conf. on Dstb
Event-Based Systems (DEBS ’15). ACM, New York, USA, 344–347.

[3] Valeria Cardellini, Francesco Lo Presti, Matteo Nardelli, and Gabriele
Russo Russo. 2018. Optimal operator deployment and replication for elas-
tic distributed data stream processing. Concurrency and Computation: Prac-
tice and Experience 30, 9 (2018), e4334. https://doi.org/10.1002/cpe.4334
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4334 e4334 cpe.4334.

[4] Bin Cheng, Apostolos Papageorgiou, and Martin Bauer. 2016. Geelytics: Enabling
On-Demand Edge Analytics over Scoped Data Sources. In IEEE BigData. 101–108.

[5] Daniele Foroni, Cristian Axenie, Stefano Bortoli, Mohamad Al Hajj Hassan,
Ralph Acker, Radu Tudoran, Goetz Brasche, and Yannis Velegrakis. 2018. Moira:
A goal-oriented incremental machine learning approach to dynamic resource
cost estimation in distributed stream processing systems. In Proceedings of the
International Workshop on Real-Time Business Intelligence and Analytics. ACM, 2.

[6] Sylvain Gelly and David Silver. 2011. Monte-Carlo tree search and rapid action
value estimation in computer Go. Artificial Intelligence 175, 11 (2011), 1856–1875.

[7] K. Ha, P. Pillai, G. Lewis, S. Simanta, S. Clinch, N. Davies, and M. Satyanarayanan.
2013. The Impact of Mobile Multimedia Applications on Data Center Consolida-
tion. In IEEE Int. Conf. on Cloud Engineering (IC2E). 166–176.

[8] Z. He, D. Zhang, J. Cao, X. Liu, X. Fan, and C. Xu. 2016. Exploiting Real-Time
Traffic Light Scheduling with Taxi Traces. In 45th Int. Conf. on Parallel Processing.
314–323. https://doi.org/10.1109/ICPP.2016.43

[9] Thomas Heinze, Lars Roediger, Andreas Meister, Yuanzhen Ji, Zbigniew Jerzak,
and Christof Fetzer. 2015. Online Parameter Optimization for Elastic Data Stream

Processing. In Proceedings of the Sixth ACM Symposium on Cloud Computing (SoCC
’15). ACM, New York, NY, USA, 276–287. https://doi.org/10.1145/2806777.2806847

[10] C. Hochreiner, M. Vogler, P. Waibel, and S. Dustdar. 2016. VISP: An Ecosystem
for Elastic Data Stream Processing for the Internet of Things. In 20th IEEE Int.
Ent. Dstb Object Comp. Conf. 1–11.

[11] Wenlu Hu, Ying Gao, Kiryong Ha, Junjue Wang, Brandon Amos, Zhuo Chen,
Padmanabhan Pillai, and Mahadev Satyanarayanan. 2016. Quantifying the Impact
of Edge Computing on Mobile Applications. In 7th ACM SIGOPS Asia-Pacific
Wksp on Systems. ACM, New York, USA, Article 5, 8 pages.

[12] Geetika T. Lakshmanan, Ying Li, and Rob Strom. 2008. Placement Strategies for
Internet-Scale Data Stream Systems. IEEE Internet Computing 12, 6 (November
2008), 50–60.

[13] Z. Liu, H. Zhang, B. Rao, and L. Wang. 2018. A Reinforcement Learning Based
Resource Management Approach for Time-critical Workloads in Distributed
Computing Environment. In 2018 IEEE International Conference on Big Data (Big
Data). IEEE, 252–261. https://doi.org/10.1109/BigData.2018.8622393

[14] Long Mai, Nhu-Ngoc Dao, and Minho Park. 2018. Real-Time Task Assignment
Approach Leveraging Reinforcement Learning with Evolution Strategies for
Long-Term Latency Minimization in Fog Computing. Sensors 18, 9 (2018), 2830.

[15] L. Ni, J. Zhang, C. Jiang, C. Yan, and K. Yu. 2017. Resource Allocation Strategy in
Fog Computing Based on Priced Timed Petri Nets. IEEE IoT Journal PP (2017),
1–1.

[16] Alexandru Iulian Orhean, Florin Pop, and Ioan Raicu. 2018. New scheduling
approach using reinforcement learning for heterogeneous distributed systems. J.
Parallel and Distrib. Comput. 117 (2018), 292–302.

[17] J. Panerati, F. Sironi, M. Carminati, M. Maggio, G. Beltrame, P. J. Gmytrasiewicz,
D. Sciuto, and M. D. Santambrogio. 2013. On self-adaptive resource allocation
through reinforcement learning. In 2013 NASA/ESA Conference on Adaptive Hard-
ware and Systems (AHS-2013). 23–30. https://doi.org/10.1109/AHS.2013.6604222

[18] Boyang Peng, Mohammad Hosseini, Zhihao Hong, Reza Farivar, and Roy Camp-
bell. 2015. R-Storm: Resource-Aware Scheduling in Storm. In 16th Annual Mid-
dleware Conf. (Middleware ’15). ACM, New York, NY, USA, 149–161.

[19] D. Perez, S. Mostaghim, S. Samothrakis, and S. M. Lucas. 2015. Multiobjec-
tive Monte Carlo Tree Search for Real-Time Games. IEEE Transactions on
Computational Intelligence and AI in Games 7, 4 (Dec 2015), 347–360. https:
//doi.org/10.1109/TCIAIG.2014.2345842

[20] Olubisi Runsewe and Nancy Samaan. 2017. Cloud Resource Scaling for Big Data
Streaming Applications Using A Layered Multi-dimensional Hidden Markov
Model. In Proc. of the 17th IEEE/ACM Int. Symposium on Cluster, Cloud and Grid
Computing (CCGrid ’17). IEEE Press, Piscataway, NJ, USA, 848–857.

[21] Gabriele Russo Russo, Matteo Nardelli, Valeria Cardellini, and Francesco Lo
Presti. 2018. Multi-Level Elasticity for Wide-Area Data Streaming Systems: A
Reinforcement Learning Approach. Algorithms 11, 9 (2018), 134.

[22] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and V. Vlassov. 2016. SpanEdge: To-
wards Unifying Stream Processing over Central and Near-the-Edge Data Centers.
In 2016 IEEE/ACM Symp. on Edge Comp. 168–178.

[23] Anshu Shukla, Shilpa Chaturvedi, and Yogesh Simmhan. 2017. RIoTBench: An
IoT benchmark for distributed stream processing systems. CCPE 29, 21 (2017),
e4257.

[24] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An intro-
duction. MIT press.

[25] M. Taneja and A. Davy. 2017. Resource aware placement of IoT application
modules in Fog-Cloud Computing Paradigm. In IFIP/IEEE Symp. on Integrated
Net. and Service Mgmt (IM). 1222–1228.

[26] Rafael Tolosana-Calasanz, José Ángel Bañares, Congduc Pham, and Omer F.
Rana. 2016. Resource management for bursty streams on multi-tenancy cloud
environments. Future Generation Computer Systems 55 (2016), 444 – 459. https:
//doi.org/10.1016/j.future.2015.03.012

[27] Alexandre Veith, Marcos Dias de Assuncao, and Laurent Lefevre. 2018. Latency-
Aware Placement of Data Stream Analytics on Edge Computing. In 16th Inter-
national Conference on Service Oriented Computing (ICSOC 2018). Springer Int.
Publishing, 215–229.

[28] David Vengerov. 2007. A reinforcement learning approach to dynamic resource
allocation. Engineering Applications of Artificial Intelligence 20, 3 (2007), 383–390.
https://doi.org/10.1016/j.engappai.2006.06.019

[29] Tom Vodopivec, Spyridon Samothrakis, and Branko Ster. 2017. On Monte Carlo
Tree Search and Reinforcement Learning. Journal of Artificial Intelligence Research
60 (2017), 881–936.

[30] Weijia Wang and Michèle Sebag. 2012. Multi-objective Monte-Carlo Tree
Search. In Proceedings of the Asian Conference on Machine Learning (Proceed-
ings of Machine Learning Research), Steven C. H. Hoi and Wray Buntine (Eds.),
Vol. 25. PMLR, Singapore Management University, Singapore, 507–522. http:
//proceedings.mlr.press/v25/wang12b.html

[31] K.P. Yoon, P.K. Yoon, C.L. Hwang, SAGE., and inc Sage Publications. 1995.Multiple
Attribute Decision Making: An Introduction. Number nos. 102-104 in Multiple
Attribute Decision Making: An Introduction. SAGE Publications. https://books.
google.fr/books?id=Fo47SWBuEyMC

https://doi.org/10.1002/cpe.4334
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4334
https://doi.org/10.1109/ICPP.2016.43
https://doi.org/10.1145/2806777.2806847
https://doi.org/10.1109/BigData.2018.8622393
https://doi.org/10.1109/AHS.2013.6604222
https://doi.org/10.1109/TCIAIG.2014.2345842
https://doi.org/10.1109/TCIAIG.2014.2345842
https://doi.org/10.1016/j.future.2015.03.012
https://doi.org/10.1016/j.future.2015.03.012
https://doi.org/10.1016/j.engappai.2006.06.019
http://proceedings.mlr.press/v25/wang12b.html
http://proceedings.mlr.press/v25/wang12b.html
https://books.google.fr/books?id=Fo47SWBuEyMC
https://books.google.fr/books?id=Fo47SWBuEyMC

	Abstract
	1 Introduction
	2 The Reconfiguration Problem
	2.1 Constraints
	2.2 Quality of Service Metrics

	3 Reinforcement Learning for Operator Reconfiguration
	3.1 Markov Decision Process
	3.2 Reinforcement Learning Algorithms

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Performance Evaluation

	5 Related Work
	6 Conclusion & Future work
	Acknowledgments
	References

