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Abstract—The computation and storage requirements of Deep
Neural Networks (DNNs) make them challenging to deploy on
edge devices, which often have limited resources. Conversely,
offloading DNNs to cloud servers incurs high communication
overheads. Partitioning and early exiting are attractive solutions
for reducing computational costs and improving inference speed.
However, current work often addresses these approaches sep-
arately and/or ignores common communication intricacies on
edge networks such as de(serialization) and data transmission
overheads. We present PORTEND, a novel performance model
that jointly optimizes partitioning, early exiting, and multi-tier
network placement. PORTEND’S novel approach outperforms
the state-of-the-art solutions in edge computing setups, reducing
the DNN inference latency by 29%.

Index Terms—DNN partitioning, early exit, performance model

I. INTRODUCTION

Next-generation applications, such as pervasive health mon-
itoring [1] and augmented reality [2], require fast and accurate
inference over rich and complex data. Unfortunately, edge de-
vices, such as smartphones and other Internet of Things (IoT)
devices, are often too resource-limited to execute complex
DNN models efficiently [3].

Edge DNN inferencing is often slow or infeasible due
to limited resources on edge. Yet sending all data to the
cloud on high-latency, bandwidth-limited links also incur high
latency [4]. Partitioning [5] and early exit [6] address the
mentioned challenges by attempting to bridge the gap between
the computational demands of DNNs and available resources
at the network’s edges. On the one hand, DNN partitioning
splits a DNN model into layers, distributing them across end
devices, edge and cloud servers. On the other hand, early exit
includes extra side branches at specific locations of the DNN
model with auxiliary classifiers that enable some samples to
leave the model earlier when meeting an entropy goal.

Previous work [5]–[10] falls short on (a) combining par-
titioning and early exit, (b) supporting multi-tier hierarchical
settings, and (c) handling communication overheads such as
(de)serialization. Additionally, many partitioning approaches
assume a single partitioning point, neglect profiling intricacies,
and focus only on minimizing latency. In contrast, early exit
approaches overlook how to map these exits to multi-tier net-
work topologies with constrained devices. Figure 1 illustrates
how the mentioned challenges strongly impact the accuracy-
latency tradeoff in a ResNet-110 model for jointly optimizing
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Fig. 1: The accuracy-latency tradeoff plot for ResNet-110.

DNN partitioning and early exits during the placement on
a 3-tier edge computing setup (see Figure 3). Each point1

shows the resulting average end-to-end latency (X-axis) and
average accuracy (Y-axis). A pure partitioning approach, such
as Neurosurgeon, creates a single partition and places it on
the edge – as this is the optimal partitioning for this scenario.
However, by jointly addressing partitioning and early exit and
enabling the deployment of multi-partition configurations, we
can further reduce latency without harming accuracy.

Our Contributions: We present PORTEND, a new per-
formance model that combines partitioning and early exiting,
enabling deployment in a multi-tier edge computing infrastruc-
ture, and allowing for simultaneous control of accuracy and
latency. PORTEND holistically accounts for inference accu-
racy, computation time, (de)serialization overhead, transmis-
sion and propagation latencies, network topology, and device
capabilities. PORTEND allows a customizable and flexible
design where developers give hints to the optimization, such
as the number and placement of partitions and early exists,
which enables the exploration of a larger search space of DNN
partitioning deployments. We evaluate PORTEND on a 3-tier
infrastructure using AWS servers by emulating a topology with
an end-user device, a resource-limited edge data center, and a
powerful cloud server. Our extensive experiments with several
DNNs and datasets demonstrate that PORTEND accurately es-
timates end-to-end inference performance and meets superior
latency-accuracy tradeoffs than prior approaches. The results
show that PORTEND’s optimal configuration outperforms the
state-of-the-art by up to 29% reduction in inference latency.

1Results show placement configuration samples on/near the Pareto frontier.



TABLE I: Summary of PORTEND’s model parameters. Pa-
rameters listed at the top of the table are given as input, while
those in the middle are measured during the offline profiling
phase. The bottom lists model outputs for a partitioning P ,
early exit threshold T , and deployment setting D.

Notation Description

M Number of tiers in the topology
j Tier index (1 ≤ j ≤ M )
PDj Propagation delay between tier j and j + 1
BWj Link bandwidth between tier j and j + 1
N Number of blocks/branches in the backbone DNN
i Block/branch index (1 ≤ i ≤ N )
Oi Output size of block i
Rs Result size (label and other information)
L Number of partitions (1 ≤ L ≤ M)
k Partition index (1 ≤ k ≤ L)
Pk The index of partition k’s last block
Dk The deployment tier for partition k

Ai Accuracy for branch i
ERT

i Exit rate of branch i, with threshold T

CT j
k Computation time of partition k on tier j

ST j
O Serialization time for data of size O on tier j

DT j
O Deserialization time for data of size O on tier j

Ek(T, P ) Estimated fraction of samples exiting at partition k
Sk(T, P ) Estimated stay rate after partition k
Accest(T, P ) Estimated inference accuracy
Latest(T, P,D) Estimated average end-to-end latency

Partition k P = ik

D = j

Tier j

PD
BW

k

j

j

Branch i

Block i

Fig. 2: A partitioned early exit deployment model.

II. PORTEND

PORTEND2 offers a performance model for a flexible
deployment on edge networks that simultaneously incorporates
DNN partitioning and early exit. Based on input parameters
such as the backbone DNN (i.e., DNN model), the dataset,
the network topology, early exit threshold (see Section II-A),
and/or the preferred latency and accuracy. PORTEND follows
3 steps: (1) offline profiling (Section II-B); (2) metrics es-
timation (Section II-C); and (3) optimization (Section II-D).
Table I summarizes key notations.

A. System Model

PORTEND addresses the placement of DNN partitions with
early exits in a geographically distributed M -tier network, as
shown in Figure 2 (bottom). Each tier connects to the next
tier via a link – non-neighboring tiers do not communicate

2A preliminary performance model appeared in a workshop paper [11].
It did not account for various latencies (serialization, computation, and
propagation), and it was not validated on an end-to-end system.

directly. A link with index j is characterized by BWj , the
bandwidth measured in bits per second (bps), and by PDj ,
the propagation delay defined as the time in milliseconds to
transmit a packet from one end to the other.

PORTEND implements early exit by adding branches that
act as auxiliary classifiers to a “backbone” DNN [6]. This
backbone is a linear sequence of blocks, As depicted in
Figure 2 (top), each block is a single layer or a sequence
of layers (for simplicity, we assume exactly one connection
between subsequent blocks). We denote the number of DNN
blocks by N and index them by i, where Oi refers to the
output size of a block i in bits. There is a potential exit
point after each block, where adding an early exit branch
is possible. There are thus N potential exit branches, each
comprised of a copy of the final classifying layers of the
backbone DNN. During inference, when a sample reaches
an exit branch, we evaluate the normalized entropy of the
output from the branch’s classifier similar to BranchyNet [6]:
η(x) = −

∑|C|
i=1

xi log xi

log |C| , where x is a probability vector
from the output of the exit branch, and C is the set of
possible labels. If the entropy is high, the classifier is not
confident about the predictions, while low entropy means that
the classifier is confident. We compare the output entropy to
the provided early exit threshold T . If η(x) < T , the sample
exits inference and we use x as the model’s output. Otherwise,
the inference process continues to the next layer.

A DNN configuration corresponds to a specific selection of
exit points used for exit branches, while the full configuration
is when all the possible exit branches are used. The maximum
number of partitions is equal to the number of DNN blocks –
the first partition always starts at block 1. PORTEND reduces
the number of configurations by limiting one exit branch in
each partition after the last block in the partition, as shown in
Figure 2. PORTEND defines the last block because (a) exiting
in an earlier block would not result in a significant reduction
in memory and compute requirements as non-exiting samples
must still go through all blocks in the partition and (b) later
exit points are likely to be more accurate than early ones. More
formally, L denotes the number of partitions in a configuration,
and k indexes them. Pk represents the index of the partition’s
last block (or exit branch). More specifically, a partition k
comprises blocks Pk−1 + 1 (the first block) to Pk (the last
block). PORTEND allows partial DNN in such a way that
PL < N , but always Pk > Pk−1.

A deployment setting is a specific assignment of partitions
to tiers. PORTEND assumes all partitions are assigned to some
tier, and each tier has at most one partition assigned to it. An
assignment D is a mapping from partitions to tiers: Dk = j
if partition k is assigned to tier j. PORTEND permits later
partitions to be assigned to either higher or lower tiers. Hence,
it allows Dk > Dk−1 and/or Dk < Dk−1.

B. Profiling Phase

PORTEND profiles the accuracy, exit rate, and computation
latency of the full configuration model in the different tiers
using a set of validation samples – it performs the profiling



once for each backbone DNN and dataset on all servers and
devices in the topology. First, PORTEND trains a full config-
uration model with all available exit branches by optimizing
the sum of loss values of all branches, followed by back-
propagating through the entire model. The profiling dataset is
neither used for training the DNN nor part of the test set used
for evaluation. The profiling for metrics happens as follows:

Computation Time (CT j
k ): the time in seconds required on

tier j to generate the output of partition k using its inputs
– the estimated computation latency of inference. PORTEND
profiles each available device due to the variations in their
capabilities. Previous work, such as [6], profiles the computa-
tion latency of each DNN layer/block separately and then sums
them up to obtain the computation latency of a partition. This,
however, neglects overheads between layers and other types
of computation, such as entropy (see Sec. III-B). PORTEND
overcomes these limitations by leveraging the partition-wise
estimation, which profiles all3 the possible partitions for em-
ploying them in the performance model.

Serialization and Deserialization Time (ST j
O, DT j

O): Send-
ing data such as tensors between devices requires encoding
it into a format that can be transmitted over the network and
decoding it back into its original form at the destination tier.
(De)serialization time depends on two factors: (1) the device’s
computation capability and (2) the size of the object – the
intermediate data size between DNN layers. For example,
serializing the output of block 1 on EfficientNet-B7 with
ImageNet takes 26 milliseconds on an ARM-based AWS
a1.medium instance. PORTEND, therefore, profiles serializa-
tion latency and deserialization latency on all available devices
for all intermediate data sizes between blocks of the DNN
model (i.e., where we might want to partition the model).

Exit Rate (ERT
i ): ERT

i represents the exit rate of branch i
with an early exit threshold of T , indicating the proportion of
validation samples that branch i can exit at the given threshold.
Later branches are generally more capable in classification,
and thus, one expects them to exhibit higher exit rates. Since
the exit rate is independent of the deployment device, it can be
measured offline on any machine. To profile ERT

i , PORTEND
considers 10 early exit thresholds between 0 and 1 and stores
the fraction of validation samples that would exit at branch i
given each early exit threshold. PORTEND measures the exit
of each branch separately from the other branches where it
runs N times, and for each run, utilizes samples starting from
the first layer (the DNN input) and sees whether they will exit
at branch i, without testing any of the previous exit branches.

Accuracy (Ai): PORTEND uses all validation samples for
each branch to correctly check how many are classified. Like
the exit rate, PORTEND repeats it N times for each branch
separately. Each time, PORTEND focuses on measuring the
accuracy of one branch i, where samples start from the
beginning of the model and are not allowed to exit before

3The profiling phase is fast (minutes for all models in Sec. III) as the
number of (device, model, partitions) combinations to profile is moderate and
profiling each only requires running inference a few times.

i – the profiled accuracy Ai of a branch does not depend on
the early exit threshold.

C. Estimation of Performance Metrics

PORTEND derives performance metrics for optimization by
combining system model parameters, and full configuration
profiling. This section describes methods for estimating the
exit rate, accuracy, and end-to-end latency. However, POR-
TEND is not limited to them – PORTEND also enables
developers to write their optimization goals and declare met-
rics like energy consumption, bandwidth utilization, monetary
cost [12], among others.

1) Estimating Exit Rate and Accuracy: PORTEND esti-
mates the exit rate per partition with Ek(T, P ). The function
combines the target early exit threshold T with partitioning P
(i.e., the last exit branch in each partition is used) to estimate
the exit rate of samples at the partition k’s exit branch. The
profiled metric ERT

i provides the exit rate of the branch i for
a full configuration. However, PORTEND must account for
samples that exit in previous partitions when the exit rate of a
partition starts from a later layer. Therefore, PORTEND must
subtract the exit rates of the last branch before partition k,
ERT

Pk−1
, from the exit rate of the last branch of partition k,

ERT
Pk

. In other words:

Ek(T, P ) =


ERT

P1
k = 1

ERT
Pk

− ERT
Pk−1

1 < k < L

1−
∑k−1

a=1 Ea(T, P ) k = L

For the last partition, k = L, the exit rate is 1 minus the sum
of all previous exit rates since all samples exit from the last
used branch. The stay rate of partition k, denoted by Sk(T, P ),
is the fraction of samples that do not exit from its exit branch.
These samples go to the next partition:

Sk(T, P ) = 1−
k∑

a=1

Ea(T, P )

PORTEND estimates the resulting accuracy of a particular
partitioning by adding up the rates of samples correctly
classified in each partition, weighted by the partition exit rate.
In other words, the weighted mean of accuracies:

Accest(T, P ) =

L∑
k=1

APk
Ek(T, P )

2) Estimating End-to-End Latency: PORTEND accounts
for four sources of latency: the computation latency of ex-
ecuting DNN layers on tiers, the latency of serialization
and deserialization of data, the propagation latency of the
links, and the data transmission latency. The total estimated
latency Latest(T, P,D) of a choice of early exit threshold T ,
partitioning P , and deployment setting D is given by:

Latest(T, P,D) =

L∑
k=1

Latcomp
k +Latserk +Latpropk +Lattxnk

The average propagation latency Latpropk (T, P,D) of a
partition k is the sum of samples that exited at partition k



(Ek(T, P )) and the remaining samples (Sk(T, P )) going to the
tier hosting the next partition. Dk maps the current partition
k to a tier, and Dk+1 gives the deployment tier of the next
partition. Hence:

Latpropk (T, P,D) = Sk

Dk+1∑
j=Dk

PDj + Ek

Dest∑
j=DK

PDj

The average transmission latency Lattxnk (T, P,D) refers to
the time to transmit the entire data over a particular link.
When the source and destination tiers have a direct link, the
transmission latency is determined by dividing the data size
by the link’s bandwidth. However, in multi-hop scenarios with
large data where, for example, the source is in tier 0, but
data processing bypasses tier 1 in favor of tier 2, packet
fragmentation results in a “pipelining” effect: tier 1 starts
to transmit the first network packet received from tier 0 to
tier 2 while receiving the second packet from tier 0. In this
scenario, the single-hop model gives an error of tens and even
hundreds of milliseconds, depending on the links’ bandwidths
and the data’s size. PORTEND overcomes this limitation by
modeling fragmentation [13]. First, PORTEND determines the
effective bandwidth BWeff between the source and destination
tiers, which is the lowest bandwidth across the involved links:
BWeff = mini≤a≤j(BWa). Second, PORTEND computes the
fragmentation latency, Lfrag , of an MTU-sized package over
the effective bandwidth: Lfrag = MTU

BWeff
, and the number of

such fragments, F = ceil( D
MTU ).Thus, the latency of sending

all fragments over all links from i to j is:

Li→j(D) = (F − 1)Lfrag +

j∑
a=i

MTU

BWa
,

where (F − 1)Lfrag is the total transmission time for all the
fragments of the packet between hop i and j, and the rest
is the transmission time for the last fragment of the packet.
Based on that, the average transmission latency of a partition,
considering exit and stay rates, is given by:

Lattxnk (T, P,D) = SkLDk→Dk+1
(OPk

)+EkLDk→Dest(Rs),

where the first component consists of the transmission latency
of samples that do not exit and the second is the transmission
latency of the result of size Rs of samples that exited – i.e.,
sent to the destination tier Dest.

The average computation latency Latcomp
k (T, P,D) uses

all samples entering the partition k (Sk(T, P ) +Ek(T, P )) to
calculate the computation latency given at Dk based on the
profiled latency CTDk

k . Thus:

Latcomp
k (T, P,D) = (Sk + Ek)CTDk

k

The average serialization/deserialization latency
Latserk (T, P,D) depends on the incoming rate of partition
k. First, when a tier receives samples, Sk + Ek, it needs to
deserialize the data. The data size is OPk−1

because it is the
output data coming from the previous tier, Pk−1. After, the
tier does its inference. Then, the resulting data is serialized
again to be sent to the next tier. The resulting data goes to
the next tier for more inference, with the rate Sk. But if the

inference is over and the sample is ready to exit, the result
size that needs to be serialized is Rs. Hence:

Latserk (T, P,D) =(Sk + Ek)DTDk

OPk−1
+

Sk · STDk

OPk
+ Ek · STDk

Res

D. Optimizing and Extending PORTEND

PORTEND offers flexibility for defining optimization goals.
This section gives an overview of how PORTEND declares an
optimization problem (single or multi-objective optimization)
based on the end-to-end latency and accuracy. Plat minimizes
latency while constraining accuracy to be at least ϵacc:

argmin
T,P,D

Latest(T, P,D)

s.t. Accest(T, P ) ≥ ϵacc

|D| = L, |P | = L

Dk ∈ [M ], Pk ∈ [N ], Pk > Pk−1 1 ≤ k ≤ L
(Plat)

Pacc maximizes accuracy while constraining latency:

argmax
T,P,D

Accest(T, P ) s.t. Latest(T, P,D) ≤ ϵLat . . .

(Pacc)
In both optimizations, Plat and Pacc, the problem can be
modeled as constrained mixed-integer nonlinear programs
(MINLP) – a general class of optimization problems that are
not easy to solve efficiently [14]. While MINLP problems are
generally complex to solve efficiently, PORTEND search space
is small enough to be amenable to exhaustive search on a lap-
top (as we show in Section III-A). Of course, the PORTEND
model also permits developers to handle larger problems using
other solvers such as dedicated MINLP solvers [14].

III. EVALUATION

We evaluate PORTEND, looking at the precision of its
model estimations, the end-to-end benefits of using it to
find optimal configurations, and exploring new theoretical
scenarios without conducting expensive experiments.

Our main two metrics are the average end-to-end inference
latency, defined as the interval between the time an input
sample is available on the edge device (tier 0) to the time the
model output is available at the destination tier, and accuracy,
the fraction of samples classified with the correct label.

A. Experimental Setup

We evaluate PORTEND on four different combinations of
models and datasets: ResNet-20 and ResNet-110 [15] applied
to CIFAR10 [16] for small image classification (32 × 32,
10 classes), EfficientNet [17] applied to ImageNet [18] for
large image classification (224 × 224, 1000 classes), and
VGGish [19] applied to AudioSet [20] for audio classification
(96 × 64 log Mel-spectrograms [21], 632 classes). We focus
on image and audio applications due to their popularity in
edge computing. We also chose popular, up-to-date DNNs
(ResNet, EfficientNet) rather than obsolete DNNs (AlexNet).
We implement the optimization problem using MINLP in such
a way that PORTEND finds the optimal solution using an



TABLE II: Models and datasets used in experiments, and the
time to find the optimal 3-tier deployment using a laptop.

Model Dataset Blocks Optimization Time

ResNet-20 CIFAR-10 10 21.2s
ResNet-110 CIFAR-10 55 30m
EfficientNet-B0 ImageNet 8 16.6s
VGGish AudioSet 4 12.2s

Tier 0
edge devices

Tier 1
base stations

Tier 2
cloud servers

10 Mb/s
20ms

400 Mb/s
40ms

Tier EC2 Type CPU Cores GPU

0 (edge device) a1.medium∗ Graviton (ARM) 1 –
1 (base station) m4.large Intel Xeon 2 –
2 (cloud server) g4dn.xlarge Intel Xeon 4 T4
∗To avoid interference from the experimental harness (e.g., data loading,
recording events), tier 0 was implemented on a 2-core a1.large with PyTorch
constrained to 1 core, simulating an a1.medium.

Fig. 3: The topology used in our experiments.

exhaustive search. The optimizer is a single-threaded brute
force search written in Python that enumerates all possible
options and applies PORTEND to evaluate them. This solver
was sufficiently fast for our goals (see Table II). Table II lists
the models, the number of blocks in each, and the time it
takes to evaluate PORTEND on all configurations (i.e., solve
the optimization problem) on a 2021 MacBook M1 Pro.

We trained the full configuration model with the training set
of each dataset – 5k samples from the test set for the profiling
phase and an additional disjoint set of 5k samples from the
test set to evaluate the target metrics. For datasets with test
sets larger than 10k samples, we select a stratified sampling
of 10k points and split them into 5k for profiling and 5k for
testing. We used PyTorch for training and inference.

All experiments use a 3-tier edge computing topology
emulated on AWS EC2 instances, as depicted in Figure 3. We
configured network bandwidth and latency using Linux Traffic
Control and the routing with Linux IP route. The message
exchange between tiers happens via ZeroMQ. Additionally,
the evaluation employs a backpressure mechanism that limits
the ingestion rate according to the system bottleneck. Note we
do not use any AWS-specific features in our experiments.

B. Validity of the Performance Model

This experiment aims to answer how well and accurately
PORTEND does estimations by comparing the estimated exit
rate, end-to-end latency, and accuracy from PORTEND with
the results obtained from experiments on AWS. We evaluate
each of the four models’ performance on a test set by varying
the configurations of early exit threshold T , partitioning P ,
and deployment setting D. We demonstrate in our graphs a
mix of configurations from the Pareto frontier and outside it
in such a way that we use 306 configurations for ResNet-20,
428 for ResNet-110, 92 for Efficient-Net, and 12 for VGGish.

Exit Rate: The predicted exit rate of each branch, EK(T, P ),
is a key component of PORTEND, as it determines the esti-
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(a) Estimated vs. measured exit rate of each branch.
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Fig. 4: Validating the accuracy of the performance model over
different configurations. Each point shows the measured (X-
axis) and estimated (Y-axis) performance of a single configu-
ration (for exit rate, a single branch of a configuration).
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Fig. 5: Accuracy of estimating computation time for layer-
wise, block-wise and partition-wise approaches.

mated accuracy and latency. Figure 4a compares the estimated
exit rate EK(T, P ) in the Y-axis with the measured exit rate
in the X-axis. The plot shows one point for each branch k
of each evaluated configuration. The closer the points are to
the Y = X line, the more accurate the estimation. We also
use linear regression and show the regression coefficient (i.e.,
slope) β and the coefficient of determination R2. R2 near 1
means the points lie close to a straight line, while β close to
1 means that this line is close to Y = X . We observe that
estimated exit rates match the actual exit rate as R2 and β in
all models are near to 1.

End-to-end Latency: Each point in Figure 4b shows the
empirical and estimated end-to-end latency Latest(T, P,D)
for one configuration. Results demonstrate how accurate the
estimations are for latency. The graph shows a single outlier
for ResNet-110 due to an unusually large CPU inference time
on tier 0 caused by external factors in the AWS environment
that are beyond our control. We included this outlier when
estimating β and R2.

Computation Time: Figure 5 shows the estimated latency (Y-
axis), the measured latency (X-axis), and the root mean square
error (RMSE). Our proposed partition-wise outperforms layer-
wise and block-wise as they systematically underestimate the
computation latency of partitions.

Accuracy: Figure 4c compares the empirical and estimated
accuracy Accest(T, P ). The estimations have few deviations,
but the estimated points tend to underestimate accuracy rather
than overestimate it. More importantly, the estimated points
form a line, meaning that the measured accuracy is propor-
tional to the estimated accuracy (i.e., high R2). Results show
that PORTEND is reliable in finding the optimal configuration
and set accuracy constraints since (a) we can compare the
estimated accuracy of different configurations and (b) the
actual accuracy is equal to or higher than the estimation.

C. Finding Optimal Configurations

The primary goal of PORTEND is to find optimal configu-
rations for early exits and partitionings, subject to application
requirements. Hence, we target the optimization of Plat in
Section II-D. We set the minimum accuracy to be 2–4% points
below the accuracy of the full model. As shown in Table II,
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Fig. 6: Comparison of solutions’ speedups (base edge-only).

TABLE III: Optimal configurations for Plat.

Model Tiers [blocks] Early exit threshold Exit rates

ResNet-20 0 [1–9] , 1 [10] 0.7 99% , 1%
ResNet-110 0 [1–25] , 1 [26–40] 0.1 82% , 18%
EfficientNet-B0 0 [1–4] , 1 (5–8) 0.3 8% , 92%
VGGish 2 [all blocks] – 100%

the time for this NP-hard optimization is short, even running
on a 2021 MacBook M1 Pro.

Figure 6 shows the speedup of PORTEND, cloud-only, and
Neurosurgeon [5] compared to the end-to-end latency of edge-
only deployment. Edge-only computes the DNN inference
with a high computational overhead on an edge device. The
cloud-only offloads the inference to a cloud server with a high
communication overhead. Neurosurgeon splits computation
between an edge device in tier 0 and the cloud in tier 2,
ignoring early exits. PORTEND achieves a superior/equivalent
speedup, demonstrating being a generic and crucial tool for
identifying the optimal configuration on multi-tier edge com-
puting. Note that the number of tiers in the optimal configura-
tion highly depends on the required minimal accuracy. While
the configurations in Table III use one or two tiers, for other
accuracy constraints, the optimal configuration has three tiers
(as shown in Figure 1).

ResNet-20: Figure 7a (left-hand side) shows the Pareto
frontier and the PORTEND’s optimal configuration. Neurosur-
geon identifies that ResNet-20 is comparatively lightweight,
so fully computing it on tier 0 is faster than offloading it
to the cloud over high-latency links. In contrast, PORTEND
combines partitioning and early exit to gain additional speedup
by placing blocks 1-9 on tier 0 and 10 on tier 1. Since 99%
of samples meet the accuracy goal and exit after layer 9 as
shown in Table III, PORTEND provides a 7% speedup.

ResNet-110: ResNet-110 is more computationally expen-
sive. On the one hand, a pure partitioning approach, such as
Neurosurgeon, will still determine that the optimal placement
is on tier 0. On the other hand, PORTEND identifies a better
deployment, which results in a significant speedup of 49% over
Neurosurgeon’s edge-only deployment while still maintaining
the desired accuracy. Figure 7b) demonstrates that PORTEND
utilizes early exit and partial DNN computation – the last
partition ends after block 40 rather than 55 –, which permits
PORTEND to improve its performance.

EfficientNet-B0: EfficientNet-B0 is computationally expen-
sive. Hence, we may expect the cloud-only approach to be
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Fig. 7: Pareto frontier (left), latency CDF of the optimal
configuration (middle), and accuracy Ai of each selected
branch (right) for different models.

beneficial. However, the larger input in this scenario incurs
high transmission costs, making the cloud-only costly. In this
experiment, Neurosurgeon achieves 8% speedup by splitting
the model into two partitions, while PORTEND achieves a
speedup of 39% using the same two partitions but benefiting
from early exits. Figure 7c details the mentioned achievement
with the latency CDF and branch accuracy for the selected
optimal configuration. PORTEND outperforms Neurosurgeon
because 8% of the samples exit in the first branch rather than
going over the full model as in Neurosurgeon.

VGGish: VGGish inference is so expensive that the opti-
mal deployment is cloud-only for all methods. In this case,
PORTEND cannot utilize early exit or truncation, as no such
configuration achieves the minimal desired accuracy: earlier
branches are too inaccurate (e.g., A3 = 0.50, well below the
target accuracy of 0.71).

Alternative Optimization Problems: PORTEND is flexible
and enables to handle other optimization problems. Hence,
this experiment addresses the optimization of maximizing Pacc

for the ResNet-110. Figure 8 demonstrates how PORTEND
maximizes the accuracy (Y-axis) following a latency constraint
(X-axis) – each point shows a configuration. Conversely, parti-
tioning approaches such as Neurosurgeon are unable to trade-
off accuracy for latency and are unable to meet the required
latency constraints beyond a certain point – for ResNet-110,
this point is the edge-only deployment.

Fine Tuning: PORTEND offers the option to do the fine-
tuning for a certain model configuration to improve the
inference accuracy further. PORTEND’s estimation is based
on a full configuration model, which includes all N possible
exit branches. However, in practice, PORTEND selects only
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Fig. 9: Exploring hypothetical scenarios with PORTEND. The
vertical line shows the relative compute power of tier 2.

L < N branches, depending on the chosen partitioning. In
contrast, more exit branches can be more difficult to train
to the same accuracy as a large number of branches (like
the full configuration) tend to yield slightly lower accuracy
than a model trained with fewer exit points. Thus, while the
full configuration model may achieve the desired accuracy,
we can often obtain additional accuracy with little effort by
fine-tuning the model weights using only the selected exit
branches. We fine-tuned the ResNet-110 configuration for
80 epochs to evaluate the benefit and compare the resulting
accuracy. Figure 8 compares the accuracy achieved before
(black) and after (gray) fine-tuning. As expected, fine-tuning
improves model performance and recovers the accuracy lost
when training the full-configuration model.

D. Exploring Hypothetical Scenarios

Having validated the accuracy of the PORTEND perfor-
mance model, we can use it to explore theoretical scenarios
without the time and cost of training models. PORTEND easily
addresses questions about the impact of various factors on the
performance of a new model, such as EfficientNetB7 [17] with
ImageNet resized to 600× 600, which would be expensive to
train and evaluate for all scenarios.

Reduced Bandwidth: In a hypothetical scenario, we reduce
the bandwidth between tiers 0 and 1 to reduce mobile commu-
nication costs. What would happen to performance? Figure 9a
shows the effect of bandwidth variation on the end-to-end
latency of the PORTEND’s optimal configuration. We limit
the available configurations to cloud-only deployments (blue)
and those split between edge and cloud (red). As expected,
latency increases as we reduce bandwidth. However, edge-



cloud deployments are less affected by this change. Thus,
edge-cloud becomes the superior deployment when bandwidth
drops below 2Mbps, despite the low computational power of
the edge device. Of course, deploying a model on tier 0 in
addition to tier 2 also incurs additional costs compared to
deploying only on tier 2. PORTEND allows developers to
explore the cost-effectiveness of such decisions.

Improving Compute: In a second hypothetical scenario,
we consider the impact of tier 1’s computational power on
the choice of tiers, as there will be cost or security im-
plications of sending the data to tier 2 for inference. How
much more computational power would we need at tier 1 to
avoid this? Figure 9b compares the end-to-end latency for tier
2 deployment (cloud-only) to a tier 1 deployment (without
partitioning) as we multiply the computational power of tier 1
by different factors. The black vertical line shows the relative
computational power of tier 2. By increasing the compute
power of tier 1 five-fold, we match the performance of the
tier 2 deployment. Since tier 1 is an m4.large AWS machine
with 4 cores and no GPU, even a modest GPU will likely
provide the required computational boost.

IV. RELATED WORK

DNN partitioning has been proposed to accelerate inference
and/or minimize the DNN’s computation and transmission la-
tency by leveraging computing resources at the edge. Previous
work (Neurosurgeon [5] has focused on two-tier networks,
such as one tier being edge and another tier being the cloud.
Other work [7] has offered solutions for jointly optimiz-
ing partitioning and scheduling, dealing with communication
and computation of multiple homogeneous DNNs placement.
There has also been some effort [6] to enable DNNs to leave
earlier with early exit approaches by skipping DNN layers
when meeting a certain entropy threshold in strategic points
of the DNN. Moreover, some works [8], [9] have focused
on static partitioning with pre-defined early exit branches
without exploiting entropy. More recently, solutions, such as
AIMA [10], have been proposed to address DNN partitioning
and early exiting. However, these solutions only provide 2-
partitions, neglecting multi-tier edge networks, overheads in-
curred by properly transmitting data, and updated DNNs. The
proposed PORTEND performance model is a comprehensive
model that addresses these points.

V. CONCLUSIONS AND FUTURE WORK

This work described PORTEND, a performance model for
the joint optimization of DNN early exit and partitioning
across a multi-tier edge network. PORTEND is a flexible and
customizable performance model that enables developers to
assess performance metrics with multiple configurations to
achieve mono and multiple optimization goals. PORTEND
leverages these features by providing an offline profiling
method, a way to declare performance metrics and a way to
define optimization goals. We evaluated PORTEND in an emu-
lated edge computing platform on AWS. Results showed that
PORTEND reduces the inference latency by 29% compared

to the state-of-the-art Neurosurgeon. Additionally, PORTEND
demonstrated how exploring hypothetical scenarios to meet
environmental changes in computing and bandwidth is easy.
In future work, we plan to integrate PORTEND with other
techniques that trade accuracy and latency, such as model
compression and quantization, and to explore environments
where the optimal deployment adapts over time.
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