
Sustainable Computing on the Edge: A System Dynamics
Perspective

Brian Ramprasad
brianr@cs.toronto.edu
University of Toronto

Toronto, Ontario, Canada

Alexandre da Silva Veith
aveith@cs.toronto.edu
University of Toronto

Toronto, Ontario, Canada

Moshe Gabel
mgabel@cs.toronto.edu
University of Toronto

Toronto, Ontario, Canada

Eyal de Lara
delara@cs.toronto.edu
University of Toronto

Toronto, Ontario, Canada

ABSTRACT
This paper explores the CO2 footprint of IoT applications by using
system dynamics modeling to estimate the CO2 emissions over time
from a wireless video analytics application. We model the impact
of the application design and the mobile infrastructure on the short
and long term emissions produced by running the application on
both cloud and edge computing infrastructures. Our analysis shows
that the base station radio and the wide-area data network are major
contributors of CO2 emissions. We find that CO2 emissions can
be reduced by 50% by placing edge centers near the base stations,
exploiting new features of the 5G mobile network, and scheduling
data uploads judiciously. We also analyze the long term effects
of application design choices and increased user base on carbon
emissions.

CCS CONCEPTS
• Hardware → Impact on the environment; • Networks →
Mobile networks.

KEYWORDS
sustainability, mobile computing, edge computing
ACM Reference Format:
Brian Ramprasad, Alexandre da Silva Veith, Moshe Gabel, and Eyal de Lara.
2021. Sustainable Computing on the Edge: A System Dynamics Perspective.
In The 22nd International Workshop on Mobile Computing Systems and Ap-
plications (HotMobile 2021), February 24–26, 2021, Virtual, United Kingdom.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3446382.3448607

1 INTRODUCTION
One of the main drivers of climate change are CO2 emissions from
electricity production due to the burning of fossil fuels, such as
coal, oil, and natural gas. The rapid development of information
technology, with the seemingly daily introduction of new devices
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotMobile 2021, February 24–26, 2021, Virtual, United Kingdom
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8323-3/21/02. . . $15.00
https://doi.org/10.1145/3446382.3448607

has the potential to exacerbate the problem. For example, continued
adoption of the Internet of Things (IoT), mobile devices, and sensor
networks is predicted to lead to 41.6 billion connected devices by
2025, which are expected to transmit over 79.4 zettabytes of data
via the Internet [9, 19] placing additional demands on the electric
power beyond the 70 billion kilowatt-hours a year that are already
required to maintain the Internet [10] today.

In this paper, we use system dynamics modeling [11] to explore
the CO2 emissions of IoT applications. As our use case, we con-
sider a cloud-based application that performs analytics on video
streams captured by a network of video cameras that use the cel-
lular network to connect to the cloud. Our model considers the
contributions of the wireless network, the wide-area network, and
the cloud servers to the application’s overall CO2 footprint.

We perform two types of analysis in this paper. First, a point
analysis that explores the relative contributions of compute and
networking to the application’s CO2 footprint. This analysis shows
that the main contributor to the CO2 footprint is energy consumed
by the cellular base-stations and data transmission over a wide-
area data network (e.g., the Internet). We show that the former
can be significantly reduced for 5G networks by implementing a
transmission schedule for video uploads which allows base stations
to sleep intermittently. For the latter, the use of edge computing [18],
where additional computation resources are positioned close to the
edge of the network (one hop away), allows for local processing
that significantly reduces the amount of data that needs to be sent
to cloud servers over the Internet. Second, a long term analysis that
explores the evolution of the overall application’s CO2 footprint
over a period of several years. Our analysis considers the effect of
increased demand due to growth in the user base, improvement in
both the cloud and edge infrastructure, and the developers efforts
to reduce the energy demands of the application.

The rest of this paper is structured as follows. Section 2 discusses
related work on approaches to modeling the CO2 footprint of cloud
based applications. Section 3 presents the main concepts of system
dynamics modeling and the CO2 model we use in our evaluation.
Section 4 presents our results. Lastly, Section 5 discusses limitations
and avenues for future work.

2 BACKGROUND AND RELATEDWORK
Current approaches toward measuring the ecological impact of
applications lack the ability to model the long term evolution and

https://doi.org/10.1145/3446382.3448607
https://doi.org/10.1145/3446382.3448607


HotMobile 2021, February 24–26, 2021, Virtual, United Kingdom Ramprasad

dynamic nature of IoT deployments. Preist et al. [15] use the Life
Cycle Assessment (LCA) method to measure the estimated global
carbon footprint of YouTube for the 2016 year. The LCA method
captures the current state of the system using past information
to calculate the carbon footprint. The interventions proposed by
the authors suggest that users change their behavior to reduce the
carbon footprint of the YouTube service. The authors noted several
limitations with the LCA approach. First, they did not consider the
impact of provisioning policies that could lead to an actual change
in the carbon footprint rather than requiring users to change their
behavior. Second, the LCA model is not dynamic. Therefore, their
approach cannot capture the rebound effect (i.e., Jevon’s paradox
[2]) of more resources being demanded as they become cheaper,
leading to more resources being deployed over long time horizons
(many years).

Another approach to measuring the ecological impact of appli-
cations can be to use System Dynamics (SD) modeling. SD models
can be particularly useful because they can operate at a high level
of abstraction which helps to understand the behaviour of a collec-
tion of systems as one larger system even if the sub-systems have
different units of measurement. For example, SD models give us the
ability to convert a unit of data (e.g., GB) to a unit of CO2 which
allows us to measure system wide impacts that have cumulative
effects such as CO2 buildup. SD models can be expanded to provide
lower levels of abstraction once more fine grained casual relation-
ships between components are understood and have been used to
build large models across a variety of subject areas such as wireless
spectrum allocation [22], environmental impact assessment [20]
and capacity planning [14].

SD models are used to understand trends in system behaviours
over long periods of time such as climate change models, which are
usually done over several years or decades as trends are of more
interest rather than a point in time analysis. Our work proposes
to use system dynamics modeling to capture the long term and
short term CO2 impact of cloud computing infrastructures and
additionally the impact of theWAN and RANwhich is vital towards
understanding the end-to-end CO2 footprint of an application.

3 A SYSTEM DYNAMICS PERSPECTIVE
IoT applications have many components that span from the client-
side to the server-side. The components of the application are spread
across physical infrastructure and they could be placed in the cloud,
the edge, and within the RAN [23]. Typically, the client-side com-
ponents would reside on a user device and that component will
upload data which may be sent over a cellular network and be
processed by components running on servers hosted in the cloud.
The cellular network and the cloud provider are stake holders in
the system that have impact on the CO2 but are out control of the
developer. The developers of the application must understand the
stakeholders impact on their applications. For example, is the cloud
provider committed to reducing emissions by giving developers
the option to lease servers that are powered by renewable energy
sources. System dynamics (SD) models are useful for understanding
the causal dependencies between the components of the system
to revel the impact of one stake holder on another so that better
decisions can be made [11].

3.1 The Dynamics of an IoT Application
To explore the dynamics of an IoT application and to be able to
quantify how different factors impact the CO2 footprint of an appli-
cation, we consider a video analytics application that is deployed at
the edge of the RAN network as depicted in Figure 1. We consider
two scenarios: First, we model a system where the images from the
cameras are sent directly to the cloud for processing. Second, we
consider the scenario where images are sent to edge servers that
are placed near the base station. Edge computing promises to allow
for faster decisions and better privacy by keeping generated data
close to where it will be processed [12]. Using the video analytics
application and set of deployment scenarios that consider the place-
ment of compute resources, we can use SD models to understand
the end-to-end CO2 footprint of an application.

Figure 1: Wireless video application deployment.

3.2 Model Structure
SD models consist of several components that allow for the continu-
ous flow of information over a specified time period. The most basic
concept in a SD model is the notion of time. The flow is measured
as the difference between the previous and current time window.
For example in a simulation that lasts 10 days, the model allows us
to see on the 10th day the cumulative effects of running the model
for the past 9 days. The components used in our CO2 model as
depicted in Figure 2 are variables, stocks, and flows. Variables can
be either constants or equations. Stocks represent a bucket that can
be filled and drained, i.e., a quantity of something. The variables and
stocks are connected via black lines and arrows which also denote
the direction of the information flow. Black lines are different from
the arrows as they have valves, depicted by the double triangle
symbol. Valves can be instrumented with functions that determine
when they are closed and by how much they can be opened, much
like a pipe that carries water. When the valve is closed the flow
accumulates in the pipe and back pressures the whole system. SD
models should mirror real systems meaning that they should not
have feedback loops that are unbounded.

Implementation
Our model is created in Vensim1, a popular simulation tool for
1https://vensim.com/



Sustainable Computing on the Edge: A System Dynamics Perspective HotMobile 2021, February 24–26, 2021, Virtual, United Kingdom

Pool of Data

CO2

Data Size

Producer
Rate

Users

Usage of Cloud
Servers

CO2 from Data
Transfer

CO2 Aggregate
Production

Cloud Consumption
Rate

CO2 from RAN

CO2 Share
from RAN

CO2 Share
from Data

CO2 from
Servers

CO2 Share
from Servers

Edge Consumption
Rate

Usage of Edge
Servers

Code 
Refactoring

Application
Growth Rate

New App
Features Economies of

Scale

Efficiency Rate

-
-

-

Figure 2: Our system dynamics CO2 emissions model.

modeling dynamic systems. Figure 2 presents an emissions model,
that is used to estimate the CO2 footprint of a typical IoT appli-
cation and the resulting impact of a developer’s decisions. The
parameters in the model can be adjusted to accommodate different
types of applications. For example, video based applications are
more data intensive as compared to text based sensor data. The
application payload size can be set inside the Data Size variable.
The model also considers the actions taken by the cloud service
provider to improve the energy efficiency of its infrastructure and
also captures the rebound effects of compute resource consumption.

CO2 Contributing Factors
The stream of data flowing through the model is the primary driver
of CO2 emissions in the system. Emission of CO2 occurs from three
sources, CO2 Share from RAN, CO2 Share from Data, and CO2 Share
from Servers, which correspond to the CO2 associated with data
transmission over the cellular network and the wide-area wired net-
work, as well as server processing, respectively. All of the emissions
are then aggregated in the CO2 Aggregate Production and collected
in the CO2 stock. The rate of the CO2 emissions is impacted by
the Producer Rate which is the volume of data going into the stock
variable Pool of Data (measured in gigabytes). The Producer Rate is
impacted by the number of Users that produce a number of data
units and the Data Size which determines the size of each data
unit. The data is collected in the Pool of Data which delivers the
data to the servers via the Cloud consumption Rate and the Edge
Consumption Rate depending on whether the application needs to
send the data to the cloud or the edge. When the data is sent to the
cloud, the WAN must be used so the Cloud Consumption Rate will
send a copy of the data through the CO2 from Data Transfer so that
the CO2 impact can be captured. Once the data has arrived at the
Cloud Consumption Rate and the Edge Consumption Rate point, the

data needs to be sent to the servers for processing. The processing
capacity of a server is measured as 1 unit of Usage of Edge or Cloud
Services and can handle 10 units of network units per hour. In our
simulation 1 network unit is 1 GB which means that a single server
can handle 20 512 MB/hour streams or 10 x 1 GB/hour streams.

CO2 Reducing Factors
As previously discussed, the data flowing through the system drives
the CO2 emissions and reducing the data rate will lower the amount
of CO2 produced by the application. The Data Size is influenced
by Code Refactoring which is a cumulative value that overtime
lowers the size of the data units. By “code refactoring”, we specifi-
cally refer to modifications that aim to reduce the data rate of the
application. The developer sets a data rate reduction target (e.g.,
5% per year) and fulfills this through a continuous commitment
to re-designing/modernising the application to transmit less data
and less frequently. Examples of concrete code refactoring could
be to implement newly developed data compression techniques,
implementing selectivity policies for reducing app data uploads,
and avoiding unnecessary heartbeats or continuous connectivity
to remote cloud services. If refactoring is not feasible, our model is
able to capture the effect of no reduction (0% improvement) while
still capturing the other factors in the system that contribute to
CO2 footprint.

Another factor that lowers the CO2 footprint of the application,
are the efforts made by the data center providers. This is repre-
sented in the model as the Efficiency Rate. This is a target that is
set by the cloud service provider where by they are able to provide
the same compute resources using less energy or they are able to
acquire energy from a renewable power source. The rate is a target
similar to the Code Refactoring and it reduces the amount of KG of
CO2 per gigabyte of data entering CO2 Share from Data and the per



HotMobile 2021, February 24–26, 2021, Virtual, United Kingdom Ramprasad

hour KG of CO2 emitted by CO2 from Servers

CO2 Feedback Loop
Our model is capable of capturing the increase in the amount of
CO2 driven by the growth in the number of Users. The more Users
there are in the system, the more CO2 is produced. The user growth
cycle is a feedback loop in the model. The relationship between
the influencing factors in the feedback loop are as follows: more
Users in the system leads to an increase in the Producer Rate, then
the increased data volume leads to an increase in the number of
Usage of Edge or Cloud Services units provisioned, which leads to the
developer being able to negotiate better prices due to the Economies
of Scale, which lowers themarginal cost of providing the application,
which in turn allows the developer to invest in the application, so
that moreNew App Features can be developed which then makes the
application more attractive and this leads to higher a Application
Growth Rate which then finally leads to more Users. This completes
the feedback loop as denoted by the red circle shown in the lower
portion of the model in Figure 2.

3.3 Model Assumptions and Limitations
The CO2 emissions model we propose is intended to simulate the
cumulative effects of decisions made by the developer and the other
factors in the system that are outside of the control of the developer.
The goal of the model is not to provide solutions to application-
specific problems, but rather to quantify the CO2 impact of decisions
made by the developer. For example, the Code Refactoring effect
is a numerical commitment target set by the developer. Likewise
the impact of Economies of Scale on a developers decision to add
new features is not deterministic since developers can just choose
to pocket the savings and not improve the application any further.
This model makes the assumption that developers want to grow
their application feature set and broaden their user base.

4 EVALUATION
In this section, we explore the CO2 contribution of our example
smart camera video analytics application deployed on the cloud.
We evaluate several approaches that developers can take towards
reducing the CO2 footprint of the application by leveraging base
station power management and edge computing. A second exper-
iment looks at the long term evolution of the applications CO2
footprint as the application user base grows and the effects of in-
frastructure efficiency improvement and software restructuring are
also considered.

4.1 Experimental Setup
We simulate the camera-based edge computing application de-
scribed in Section 3.1: wireless cameras send video frames over
a 5G cellular network for processing on local edge servers and/or
on remote cloud servers. We consider the CO2 emissions from the
RAN, the WAN and the servers in the data center. The CO2 from
the cameras is not included in our model. The CO2 parameters used
in the experiments were obtained from the USA EPA Greenhouse
Gas Equivalencies Calculator[8]. Table 1 presents the model param-
eter values used to compute the carbon footprint. For simplicity,
we use the same server hardware for both the edge and cloud. In

future work we plan to explore different server types since the
cloud servers could be more powerful as compared to the servers
deployed on the edge. The server CO2 parameter used in the model
is derived from the yearly kWh consumption for a modern dual
processor server provided by Dell, rated at 1760.3 kWh per year2.
To convert kWh to CO2 per year we used the EPA calculator which
works out to 1760.03×0.707 = 1244KG of CO2 per year. Therefore
the server will have a carbon footprint of 1244/(365×24) = 0.142
KG CO2 per hour. We obtained the data rates using the Closed
Circuit Television (CCTV) Calculator web tool3. A camera with a
1080p resolution has a data rate of 1.5 GB per hour and a 4K camera
has a data rate of 7.2 GB per hour. The energy consumption for
a 5G BS is 11 kWh [1] and transmitting 1 GB over the WAN will
consumer 0.06 kWh[4]. By using the EPA calculator, this amount
of energy is equivalent to 7.80 KG and 0.042 KG of CO2 per hour
respectively.

Table 1: Model parameter values

Description Value

GB on WAN network to CO2 0.042 KG per GB [8]
Server CO2 0.142 KG/hour [5]
5G RAN to CO2 7.8 KG/hour [1]

No S
lee

p+
Clou

d

Sle
ep

+Clou
d

Sle
ep

+Ed
ge

5G Advanced Sleep Mode 4K Video Comparison

0

2000

4000

6000

8000

KG
 o

f C
O2

Servers
WAN
RAN

Figure 3: CO2 emissions of the video application using a 5G
network over a 30 day period.

4.2 The Contributors to an Application’s CO2
Footprint

This experiment considers 3 different deployment scenarios over
30 days using 5G radio access networks as depicted in Figure 3.
The left bar (No Sleep+Cloud) represents the CO2 footprint of our
video analytics application when the data is being uploaded from
the smart cameras to the cloud and the BS is not configured to sleep.
The results of this experiment show that the biggest contributor to
the CO2 footprint of the application is the RAN following by the
WAN and the Servers.
2https://i.dell.com/sites/csdocuments/CorpComm_Docs/en/carbon-footprint-
poweredge-r640.pdf
3https://www.cctvcalculator.net/en/calculations/bandwidth-calculator/



Sustainable Computing on the Edge: A System Dynamics Perspective HotMobile 2021, February 24–26, 2021, Virtual, United Kingdom

The 5G NR standard allows for the BS to be put into deep sleep
using a tiered mode design. As the RAN is the largest contributing
factor to the CO2 footprint of the application we can see in Figure 3
that comparing the cumulative CO2 of the left bar (No Sleep+Cloud)
and the middle bar (Sleep+Cloud) that our server-side sleep policy
has reduced total emissions by approximately 25%. Our server-side
sleep policy achieves this by having the BS request the cameras
to upload data that is stored in their local buffers. Furthermore, as
can been seen in the right bar (Sleep+Edge), by sending the data
directly to the edge we can nearly eliminate the CO2 emissions
from the WAN and lower the total CO2 footprint from 8000 KG to
4000 KG, which is a 50% reduction.

The Impact of Server-side Sleeping
Our server-side sleep policy is designed to address future IoT deploy-
ments where always-on devices such as cameras and sensors are
continuously uploading data using a 5G connection. Approaches
towards optimizing the 5G BS sleep feature from the RAN-side
have yielded energy reductions between 80%-90% [16, 21]. How-
ever, these approaches consider current RAN usage patterns which
mostly consist of transient connections that are downstream trans-
missions. An application that implements our server-side policy
will no longer send continuous streams of data that will unnecessar-
ily keep the BS at full power. Periodic transmission or batching of
information has the potential to drastically reduce the energy used
by the BS[7]. Our server-side sleep policy is configured to request
uploads from the camera as a batch once per minute during off peak
hours (12am to 12pm). By requesting the uploads from the server
side we can coordinate the upload between devices to minimize the
total time that the BS powered on. Our policy potentially helps the
BS to go to sleep more often and limits the time that the cameras
will spend uploading data and completing any application manage-
ment tasks. The data upload time and BS wake up time is configured
in our model to take 10 seconds. A 5G BS requires 11 kWh of power
when it is in an active state and when using our policy, the BS can
now sleep for 50 seconds per minute which lowers consumption
to 1.87 kWh which represents an 83% reduction in energy usage
for always-on type devices which is similar to what others have
achieved with sleeping strategies for transient type connections
[6, 16, 17, 21]. The impact of our policy is that now the base station
is being powered on for only 10 minutes per hour instead of the
full hour.

4.3 The Evolution of an Application’s CO2
Footprint

This experiment explores the effects on the application’s CO2 foot-
print from the growth in the user-base, improvements in the ap-
plication’s code base and the underlying infrastructure. This set
of experiments measures the CO2 footprint of our video analytics
application where the cameras upload their frames over a WiFi net-
work and the data is transmitted over the WAN to servers hosted
in the cloud. We compare the resulting CO2 impact for six different
scenarios, and consider the consequences of video resolution and
code refactoring to lower the data rate of the application.

Table 2 describes the developer decisions that we consider in
our simulation. Resolution is the resolution of video frames sent

Table 2: Experimental scenarios and parameter points

Scenario Resolution Refactoring 4K Switch

4K-N-0 4K No Year 0
4K-Y-0 4K Yes Year 0
1080P→4K-N-4 1080p → 4K No Year 4
1080P→4K-Y-4 1080p → 4K Yes Year 4
1080P-N-N 1080p No None
1080P-Y-N 1080p Yes None

by cameras, which affects the data rate. Refactoring represents the
commitment of the developer to improving their code by reducing
the data rate and in this set of experiments we set an annual target
for the developer to reduce the volume of data transmitted by 10%.
The 4K Switch factor determines the year in which the developer
switches from a 1080p resolution to a 4K resolution, which changes
the per camera data rate from 1.5 GB to 7.2 GB per hour respectively.
In our experiments, if a switch in resolution needs to occur, it will
happen at the beginning of year 4. The timeline of the simulation
is over a period of six years.

0 12 24 36 48 60 72
Time (Months)

0

200

400

600

Nu
m

be
r o

f U
se

rs

4K-N-0
4K-Y-0

1080P->4K-N-4
1080P->4K-Y-4

1080P-N-N
1080P-Y-N

Figure 4: User base growth

The growth in the user base is the primary driver for the amount
of data that is put into the system. The rate of growth is influ-
enced by the new app features which in turn is influenced by the
economies of scale factor. Figure 4 shows the growth rate for the
scenarios we consider. The User base growth rate is very similar
until the end of the 3rd year and then they diverge. The reason for
the divergence is because the (4K-N-0), (4K-Y-0), (1080P→4K-N-4)
experiments have a higher data rate due to the use of the 4K cam-
eras which require more servers to process the data, which leads to
the developer getting a discount on the servers and in turn allowing
the developer to invest more in application features. The scenarios
(1080P→4K-Y-4), (1080P-N-N), (1080P-Y-N) have much lower data
rates and therefore suppress the impact of the economies of scale
and new application features on the user base growth.

Figure 5 shows the economies of scale factor as a cumulative
discount that grows overtime based on the number and length of
time that the servers leased. The discount is cumulative because
the cost per compute unit goes down over the years. We can see



HotMobile 2021, February 24–26, 2021, Virtual, United Kingdom Ramprasad

0 12 24 36 48 60 72
Time (Months)

2

4

6

8

10

Fa
ct

or

4K-N-0
4K-Y-0

1080P->4K-N-4
1080P->4K-Y-4

1080P-N-N
1080P-Y-N

Figure 5: Economies of scale factor

the changes in the trend for experiments (4K-Y-0) and (1080P→4K-
N-4) which cross at the end of the 5th year and (1080P→4K-N-4)
continues to move upward because code refactoring was not used
from the beginning. This is an example of Jevons paradox because
in this case the higher economies of scale means the application
is using more compute resources so the discount is higher and a
leaves more money for the developer to invest in the application
that will use more servers.

0 12 24 36 48 60 72
Time (Months)

0

10

20

30

40

To
ns

 o
f C

O2

4K-N-0
4K-Y-0

1080P->4K-N-4
1080P->4K-Y-4

1080P-N-N
1080P-Y-N

Figure 6: Monthly CO2 for each year

Figure 6 shows an application’s CO2 footprint on amonthly basis.
The figure shows that there is a significant difference between the
different scenarios. In the experiment (4K-Y-0) the line eventually
decreases because the data center provider efficiency is outpacing
the data rate growth of the application. In the (4K-Y-0) experiment
the developer has additionally committed to refactoring and we
see that the monthly rate is much lower compared to (4K-Y-0)
because code refactoring is lowering the data rate over the 6 years.
In the (1080P→4K-N-4) experiment where the developer has chosen
to delay the deployment of the 4K feature until the beginning of
year 4 but has neglected to consider refactoring, the monthly CO2
contribution spikes and is higher in year 4-6 as compared to (4K-
Y-0) where the 4K setting was enabled from the beginning, but
refactoring was used. In (1080P→4K-Y-4) we can see that the spike
at the beginning of year 4 is lower because the effects of continuous
improvement are cumulative so when the higher resolution setting

was introduced at the beginning of year 4 the platform was more
efficient due to the code refactoring. In the experiments 1080P-N-
N and 1080P-Y-N, no switch to 4K happens and they only differ
because of the impact of code refactoring.

0 12 24 36 48 60 72
Time (Months)

0

500

1000

1500

2000

To
ns

 o
f C

O2

4K-N-0
4K-Y-0

1080P->4K-N-4
1080P->4K-Y-4

1080P-N-N
1080P-Y-N

Figure 7: Cumulative CO2

Considering the overall CO2 footprint of the application, we can
see that in Figure 7 that there are significant differences in the cumu-
lative CO2 at the end of the 6th year. The least optimized scenario is
the (4K-N-0) experiment because it has the highest cumulative CO2
footprint due to the developers decision to enable the 4K setting
and not commit to any refactoring and is instead relying on the
service provider to make all of the optimizations. Contrasting this
result with the most optimal scenario which is (1080P-Y-N) we can
see that the cumulative CO2 is much lower because the lowest
resolution is used and a commitment to refactoring was made by
the developer.

5 DISCUSSION
This paper takes a first step into investigating the CO2 footprint
of IoT applications. We consider the use case of a video analytics
application deployed both in the cloud and edge. Our evaluation
highlights the importance that programmer design decisions have
on the overall CO2 footprint of applications, and the need for con-
tinuous improvement to offset increases in CO2 emissions driven
by growth in an application’s user base.

In the future, we plan to explore other application archetypes
which have different deployment scenarios. For instance, applica-
tion components can run on multiple machines in the path from the
source to the cloud in a hierarchy of data centers [13]. Additional
factors would then become a concern such as increased synchro-
nization between components and encryption that can add to the
transmission overhead [3]. These factors may have a significant
effect on CO2 production. More work is needed to study scenarios
with these types of data access patterns to generate a set of recom-
mendation guidelines for mobile edge computing initiatives that
minimize the environmental impact of applications running on the
edge.

REFERENCES
[1] 5G Power 2020. 5G Power: Creating a green grid that slashes costs, emissions

and energy use. https://www.huawei.com/ca/publications/communicate/89/5g-
power-green-grid-slashes-costs-emissions-energy-use

https://www.huawei.com/ca/publications/communicate/89/5g-power-green-grid-slashes-costs-emissions-energy-use
https://www.huawei.com/ca/publications/communicate/89/5g-power-green-grid-slashes-costs-emissions-energy-use


Sustainable Computing on the Edge: A System Dynamics Perspective HotMobile 2021, February 24–26, 2021, Virtual, United Kingdom

[2] Blake Alcott. 2005. Jevons’ paradox. Ecological Economics 54, 1 (2005), 9 – 21.
[3] K. Andersson, X. Chen, C. Esposito, and E. Rondeau. 2020. Editorial: IEEE

Transactions on Sustainable Computing, Special Issue on Cryptography and Data
Security in Sustainable Computing (Part 1). IEEE Transactions on Sustainable
Computing 5, 02 (jul 2020), 160–160.

[4] Joshua Aslan, Kieren Mayers, Jonathan G. Koomey, and Chris France. 2018.
Electricity Intensity of Internet Data Transmission: Untangling the Estimates.
Journal of Industrial Ecology 22, 4 (2018), 785–798.

[5] Dell Technologies [n.d.]. Product Carbon Footprints: Dell Technologies.
https://corporate.delltechnologies.com/en-us/social-impact/advancing-
sustainability/sustainable-products-and-services/product-carbon-
footprints.htm

[6] A. El-Amine, H. A. Haj Hassan, M. Iturralde, and L. Nuaymi. 2019. Location-
Aware Sleep Strategy for Energy-Delay Tradeoffs in 5G with Reinforcement
Learning. In 2019 IEEE 30th Annual International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC). 1–6. https://doi.org/10.1109/PIMRC.
2019.8904155

[7] P. Frenger and K. W. Helmersson. 2019. Energy Efficient 5G NR Street-Macro
Deployment in a Dense Urban Scenario. In 2019 IEEE Global Communications
Conference (GLOBECOM). 1–6.

[8] Greenhouse Gas Equivalencies Calculator 2018. Greenhouse Gas Equivalen-
cies Calculator. https://www.epa.gov/energy/greenhouse-gas-equivalencies-
calculator

[9] AndreaHamm,AlexanderWillner, and Ina Schieferdecker. 2019. Edge Computing:
A Comprehensive Survey of Current Initiatives and a Roadmap for a Sustainable
Edge Computing Development. arXiv:1912.08530 [cs.DC]

[10] Christopher Helman. 2019. Berkeley Lab: It Takes 70 Billion Kilowatt
Hours A Year To Run The Internet. https://www.forbes.com/sites/
christopherhelman/2016/06/28/how-much-electricity-does-it-take-to-run-the-
internet/?sh=7e284e731fff. Online.

[11] Donella H. Meadows. 2008. Thinking in Systems: A Primer. Chelsea Green
Publishing.

[12] Seyed Hossein Mortazavi, Mohammad Salehe, Moshe Gabel, and Eyal de Lara.
2020. Feather: Hierarchical Querying for the Edge. In IEEE/ACM Symposium on
Edge Computing (SEC).

[13] Seyed Hossein Mortazavi, Mohammad Salehe, Carolina Simoes Gomes, Caleb
Phillips, and Eyal de Lara. 2017. Cloudpath: A multi-tier cloud computing frame-
work. In Proceedings of the Second ACM/IEEE Symposium on Edge Computing.
1–13.

[14] Derek L. Nazareth and Jae Choi. 2017. Capacity Management for Cloud Comput-
ing: A System Dynamics Approach. In AMCIS.

[15] Chris Preist, Daniel Schien, and Paul Shabajee. 2019. Evaluating Sustainable
Interaction Design of Digital Services: The Case of YouTube. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems (CHI ’19). 1–12.

[16] F. E. Salem, Z. Altman, A. Gati, T. Chahed, and E. Altman. 2018. Reinforcement
Learning Approach for Advanced Sleep Modes Management in 5G Networks. In
2018 IEEE 88th Vehicular Technology Conference (VTC-Fall). 1–5. https://doi.org/
10.1109/VTCFall.2018.8690555

[17] F. E. Salem, A. Gati, Z. Altman, and T. Chahed. 2017. Advanced Sleep Modes
and Their Impact on Flow-Level Performance of 5G Networks. In 2017 IEEE 86th
Vehicular Technology Conference (VTC-Fall). 1–7. https://doi.org/10.1109/VTCFall.
2017.8288125

[18] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies.
2009. The case for vm-based cloudlets in mobile computing. IEEE pervasive
Computing 8, 4 (2009), 14–23.

[19] Help Net Security. 2019. Connected IoT Devices. https://www.helpnetsecurity.
com/2019/06/21/connected-iot-devices-for. Online.

[20] Michal Sedlacko, Andre Martinuzzi, and Karin Dobernig. 2014. A Systems Think-
ing View on Cloud Computing and Energy Consumption. In ICT4S.

[21] R. Tano, M. Tran, and P. Frenger. 2019. KPI Impact on 5G NR Deep Sleep State
Adaption. In 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall). 1–5.
https://doi.org/10.1109/VTCFall.2019.8891171

[22] Rikin Thakker, S. Sarkani, and T. Mazzuchi. 2012. A system dynamics approach
to demand and allocation of wireless spectrum for mobile communication. In
CSER.

[23] Abhishek Tiwari, Brian Ramprasad, Seyed Hossein Mortazavi, Moshe Gabel,
and Eyal de Lara. 2019. Reconfigurable Streaming for the Mobile Edge. In 20th
InternationalWorkshop onMobile Computing Systems andApplications (HotMobile).
Santa Cruz, CA.

https://corporate.delltechnologies.com/en-us/social-impact/advancing-sustainability/sustainable-products-and-services/product-carbon-footprints.htm
https://corporate.delltechnologies.com/en-us/social-impact/advancing-sustainability/sustainable-products-and-services/product-carbon-footprints.htm
https://corporate.delltechnologies.com/en-us/social-impact/advancing-sustainability/sustainable-products-and-services/product-carbon-footprints.htm
https://doi.org/10.1109/PIMRC.2019.8904155
https://doi.org/10.1109/PIMRC.2019.8904155
https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator
https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator
https://arxiv.org/abs/1912.08530
https://www.forbes.com/sites/christopherhelman/2016/06/28/how-much-electricity-does-it-take-to-run-the-internet/?sh=7e284e731fff
https://www.forbes.com/sites/christopherhelman/2016/06/28/how-much-electricity-does-it-take-to-run-the-internet/?sh=7e284e731fff
https://www.forbes.com/sites/christopherhelman/2016/06/28/how-much-electricity-does-it-take-to-run-the-internet/?sh=7e284e731fff
https://doi.org/10.1109/VTCFall.2018.8690555
https://doi.org/10.1109/VTCFall.2018.8690555
https://doi.org/10.1109/VTCFall.2017.8288125
https://doi.org/10.1109/VTCFall.2017.8288125
https://www.helpnetsecurity.com/2019/06/21/connected-iot-devices-for
https://www.helpnetsecurity.com/2019/06/21/connected-iot-devices-for
https://doi.org/10.1109/VTCFall.2019.8891171

	Abstract
	1 Introduction
	2 Background and Related Work
	3 A system dynamics perspective
	3.1 The Dynamics of an IoT Application
	3.2 Model Structure
	3.3 Model Assumptions and Limitations

	4 Evaluation
	4.1 Experimental Setup
	4.2 The Contributors to an Application's CO2 Footprint
	4.3 The Evolution of an Application's CO2 Footprint 

	5 Discussion
	References

