
Latency-Aware Strategies for Placing Data Stream
Analytics onto Edge Computing

Alexandre da Silva Veith, Marcos Dias de Assunção, Laurent Lefèvre
Inria, LIP, ENS Lyon, University of Lyon

Abstract

Much of the ”big data” generated today is received in
near real-time and requires quick analysis. In Internet
of Things (IoT) [1, 9], for instance, continuous data
streams produced by multiple sources must be handled
under very short delays.

As a result, several stream processing engines have
been proposed. Under several engines, a stream pro-
cessing application is a directed graph or dataflow whose
vertices are operators that execute a function over the in-
coming data and edges that define how data flows be-
tween them. A dataflow has one or multiple sources (i.e.,
sensors, gateways or actuators), operators that perform
transformations on the data (e.g., filtering, mapping, and
aggregation) and sinks (i.e., queries that consume or store
the data).

In a traditional cloud deployment, the whole applica-
tion is placed in the cloud computing to benefit from
virtually unlimited resources. However, processing all
the data in the cloud can introduce latency due to data
transfer, which makes near real-time processing diffi-
cult to achieve. In contrast, edge computing has become
an attractive solution for performing certain stream pro-
cessing operators, as many edge devices have non-trivial
compute capacity.

The deployment of data stream processing applica-
tions onto heterogeneous infrastructure has been proved
to be NP-hard [2]. Moving operators from cloud to
edge devices is challenging due to limitations of edge
devices [5]. Existing work often proposes placements
strategies considering user intervention [8]. Many mod-
els do not support memory and communication con-
straints [6, 4] while others consider all data sinks to be
located in the cloud, with no feedback loop to actua-
tors located at the edge of the network [3, 7]. There is
a lack of solutions covering scenarios involving smart
cities, precision agriculture, and smart homes compris-
ing various heterogeneous sensors and actuators, as well

as, time-constraint applications.

We model the data stream processing placement prob-
lem considering heterogeneous computational and net-
work resources, and computing and communication as
M/M/1 queues (i.e., Poisson arrival distribution, expo-
nential service time and single server). Events are han-
dled in a First-Come, First-Served fashion both by the
computation and communication services, guaranteeing
the time order of events; an important requirement in
many data stream processing applications. The model
allows us to calculate the waiting and service times for
each message in computation and communication queues
allowing for estimating the response time.

We then propose two strategies to minimize the ap-
plication response time by splitting the dataflow graph
dynamically and distributing the operators across cloud
and edge infrastructure. We focus on real-time analytics
applications with multiple sources and sinks distributed
across resources. In particular, we first decompose the
application graph by considering behaviors such as forks
and joins (i.e., split points), and by identifying the oper-
ator dependencies recursively.

The Response Time Rate (RTR) strategy takes the de-
composed graph and organizes the deployment sequence
and consecutively calculates the response time for each
operator by considering the previous mappings, resource
capabilities, and operator requirements. RTR with Re-
gion Patterns (RTR+RP) strategy extends RTR by ex-
ploiting the split points to first find candidate operators
for edge or cloud and then estimates the response time
for the edge operators.

Comprehensive simulations considering multiple ap-
plication configurations demonstrate that our approach
can improve the response time up to 50%. For future
work, we will investigate further techniques to deal with
CPU-intensive operators and their energy consumption.



References
[1] ATZORI, L., IERA, A., AND MORABITO, G. The internet of

things: A survey. Computer Networks 54, 15 (2010), 2787–2805.

[2] BENOIT, A., DOBRILA, A., NICOD, J.-M., AND PHILIPPE, L.
Scheduling linear chain streaming applications on heterogeneous
systems with failures. Future Gener. Comput. Syst. 29, 5 (July
2013), 1140–1151.

[3] CARDELLINI, V., GRASSI, V., PRESTI, F. L., AND NARDELLI,
M. Distributed QoS-aware scheduling in Storm. In 9th ACM In-
ternational Conference on Distributed Event-Based Systems (New
York, USA, 2015), DEBS ’15, ACM, pp. 344–347.

[4] CHENG, B., PAPAGEORGIOU, A., AND BAUER, M. Geelytics:
Enabling on-demand edge analytics over scoped data sources. In
IEEE International Congress on Big Data (BigData Congress)
(June 2016), pp. 101–108.

[5] DE ASSUNÇÃO, M. D., DA SILVA VEITH, A., AND BUYYA, R.
Distributed data stream processing and edge computing: A survey
on resource elasticity and future directions. Journal of Network
and Computer Applications 103 (2018), 1 – 17.

[6] HOCHREINER, C., VOGLER, M., WAIBEL, P., AND DUSTDAR,
S. VISP: An ecosystem for elastic data stream processing for
the internet of things. In 20th IEEE International Enterprise Dis-
tributed Object Computing Conference (EDOC 2016) (Sept 2016),
pp. 1–11.

[7] NI, L., ZHANG, J., JIANG, C., YAN, C., AND YU, K. Resource
allocation strategy in fog computing based on priced timed petri
nets. IEEE Internet of Things Journal PP, 99 (2017), 1–1.

[8] SAJJAD, H. P., DANNISWARA, K., AL-SHISHTAWY, A., AND
VLASSOV, V. Spanedge: Towards unifying stream processing over
central and near-the-edge data centers. In 2016 IEEE/ACM Sym-
posium on Edge Computing (SEC) (Oct 2016), pp. 168–178.

[9] UCKELMANN, D., HARRISON, M., AND MICHAHELLES, F. An
architectural approach towards the future internet of things. In
Architecting the internet of things. Springer, 2011, pp. 1–24.

2


